电源的输出纹波噪声究竟该取多少才合适?

最新更新时间:2014-10-23来源: 互联网关键字:电源  输出纹波  噪声 手机看文章 扫描二维码
随时随地手机看文章

在设计或应用电源时,大家都会关心电源的输出纹波噪声,但取多少合适呢?若要求放宽了,纹波噪声过大,电路不能正常工作,还费时间调试修改。要求高了,自然滤波器的成本上升,且可能变成是杀鸡用牛刀式的过度设计。

下面根据一些常规的应用,推荐一些能容忍纹波噪声的值,可做一些参考。

1、 普通的数字I/O隔离:电源的纹波噪声容限比较大,100mV左右都没问题;

图1 IO隔离

2、继电器输出、光耦输出的电源隔离:跟数字I/O类似,可容忍达100mV的纹波噪声;

3、工业通讯端口的供电:像RS-232、RS-485、CAN等总线型的电源隔离,本身是数字信号,想RS-485、CAN还是差分形式传输,对电源的纹波噪声不那么敏感,电源的纹波噪声一般控制在75mV左右即可;

图2 工业通讯电源隔离

4、后级带线性调整器电源电路:类似于致远电子生产的LM7805的线性调整器,内部带负反馈系统,对电源的纹波噪声有一定的衰减能力,故后级带线性调整器的电源电路,纹波噪声控制在75mV左右一般能满足要求。5、低速、低精度的数据采集系统:对精度和速度要求不高,纹波噪声控制在50mV一般都能满足数据采集的需求;

图3 低速数据采集

6、给低压CPU供电的电源:像类似于1.2V、0.8V的CPU供电系统,对电源的纹波噪声比较敏感,纹波噪声大时容易影响CPU的正常工作,甚至烧坏CPU,一般要求控制在30mV以内;

7、高速、高精度数据采集系统:对精度和速度都有较高要求,对电源的纹波噪声及其敏感,除要求电源的纹波噪声小外,还需选用一些高精度、共模和电源抑制比大的运放来配合,电源的纹波噪声一般都需控制在10mV以内。

图4 高精度数据采集隔离

关键字:电源  输出纹波  噪声 编辑:探路者 引用地址:电源的输出纹波噪声究竟该取多少才合适?

上一篇:开关电源的电路组成及原理讲解
下一篇:高功率因数的单相全桥PWM整流电路原理

推荐阅读最新更新时间:2023-10-12 22:47

高频开关电源数字控制的特点
  随着各种微处理器芯片(如数字信号处理器等)的工作速度的提高、运算能力的增强、集成度的提高,以及成本的下降,使得开关电源的控制也可以通过微处理器用软件来实现。与模拟电路相比较,数字化控制具有以下的优点:   (1)可以实现一些先进的,但叉比较复杂的控制方法,而这些方法用模拟电路是不能或不容易实现的。   (2)外围模拟器件数目很少,由于模拟器件的老化和温度漂移等引起的控制性能变差的问题,可以得到有效的改善,可靠性大大地提高。   (3)控制算法通过软件来实现,可以避免模拟器件参数的离散性所引起的控制特性的不一致性。   (4)控制方法或参数的修改成本低、周期短。   (5)适应于对电源模块要求不断提
[电源管理]
基于SIGLENT示波器、信号源、电源的SCPI探索及应用
  一、概述   随着科学技术的发展,工程师们对电子测量技术及测量仪器的要求越来越高。为了给予用户更多的方便,SIGLENT特别开发了一套编程命令,这套编程命令可以支持SCPI远程控制,满足用户对仪器的远程控制需要。同时,这套命令也支持USB-TMC协议。   二、应用介绍   1、 产品研发测试   在产品研发过程中,工程师们往往需要进行多项、大量的测试,以测试、验证产品性能指标。因此,通过自动化、标准化等测试、检测,对于产品性能指标的精确控制有着至关重要的作用。   当前SIGLENT已通过搭建自动化控制平台,实现所有产品开发过程中的自动化测试、校准、检测,达到统一的标准化控制。     2、 生产制造   对于
[测试测量]
基于SIGLENT示波器、信号源、<font color='red'>电源</font>的SCPI探索及应用
35年后,APEC仍将继续主导电源管理技术创新的基调
从爆炸图演示板到首届栅极驱动器的会议,APEC在过去35年中已经从小型电源设计爱好者会议发展成为汇集一流电源专家和电源设计创新者的全球最大盛会。下面,我们将跟随APEC资深人士的回忆,回顾35年前APEC的点点滴滴,并了解展会、德州仪器(TI)和电源行业自此以来的发展历程。 Pradeep Shenoy,全球电源设计服务经理 我参加APEC的头几年感觉有点像访问一个新的国家,对当时这个会议上发生的事情懵懵懂懂。它涉及的应用非常广泛(从低功耗太阳能光伏能量收集到大功率电机驱动),技术深度也让人感到有些无所适从。数字控制在当时还是一个热门话题,诸如氮化镓之类的宽带隙半导体才刚刚在开关电源转换器中出现,而电动车辆尚处于起步阶
[电源管理]
35年后,APEC仍将继续主导<font color='red'>电源</font>管理技术创新的基调
优化针对高端应用处理器的电源管理
  针对当今便携式应用处理器的电源管理解决方案的集成度越来越高了。总功耗、待机和休眠电流消耗会影响电池的大小、原材料成本与产品验收。设计智能手机或PDA之类的便携式器件时,系统设计师必须考虑电源的多种变量。智能手机越来越耗电,需要高度集成的电源管理解决方案,以便在尽可能最小的PCB面积中满足整体设计对最长电池寿命的要求。当今的应用处理器要求内核、I/O、存储器和外设具有独立的电源域。LP3971是一个灵活的电源管理单元(PMU),借助于3个高效降压转换器和6个LDO可以满足全部要求。应用处理器需要多个电源电压,其可根据核心电源管理器和系统架构的要求进行优化。LP3971满足了广泛的系统要求,具有I 2 C控制的输出电压,和工厂可配
[电源管理]
优化针对高端应用处理器的<font color='red'>电源</font>管理
探讨整合式电源磁性元件DC/DC转换器解决方案
  许多通讯设备的架构标準都有固定的基座大小及供电量。以精简尺寸维持高效率的负载点(POL)电源解决方案,有助于提升介面卡密度(card density),节省空间并达到产品差异化的效果。设计人员必须在开发阶段迅速解决技术问题,简单的电源解决方案可减轻负担,让工程人员专注于核心竞争力发展。整合式磁性套件的单一封装DC/DC转换器,可解决许多难题。本文将探讨整合式电源解决方案,相较于离散解决方案的优缺点,并简要说明外部元件、散热、解决方案尺寸、杂讯产生及电路板黏着的影响。   整合式电源解决方案   磁性元件设计及製造技术的进步,将尺寸更小且电流更高的电感与DC/DC转换器积体电路放在同一个基板上。整合式电源解决方案(integra
[电源管理]
探讨整合式<font color='red'>电源</font>磁性元件DC/DC转换器解决方案
电源设计小贴士:MLC电容器常见缺陷的规避方法
因其小尺寸、低等效串联电阻(ESR)、低成本、高可靠性和高纹波电流能力,多层陶瓷(MLC)电容器在电源电子产品中变得极为普遍。一般而言,它们用在电解质电容器leiu中,以增强系统性能。相比使用电解电容器铝氧化绝缘材料时相对介电常数为10的电解质,MLC电容器拥有高相对介电常数材料(2000-3000)的优势。这一差异很重要,因为电容直接与介电常数相关。在电解质的正端,设置板间隔的氧化铝厚度小于陶瓷材料,从而带来更高的电容密度。 温度和DC偏压变化时,陶瓷电容器介电常数不稳定,因此我们需要在设计过程中理解它的这种特性。高介电常数陶瓷电容器被划分为2类。图1显示了如何以3位数描述方法来对其分类,诸如:Z5U、X5R和X7R等。例
[模拟电子]
<font color='red'>电源</font>设计小贴士:MLC电容器常见缺陷的规避方法
低待机功耗手机充电器电源管理IC应用
  油价飞涨,原物料价格屡创新高,全球能源管里濒临崩溃边缘,“节约能源”再次成为最热门的议题。而在环保的观念持续强化下,现代人对于日常节约能源的观念越来越健全,但节约能源除了把不用的电器关闭或是采取定时开关方式节约能源外,其实这些电子装置本身因电源电路设计的限制。平日开启运作及待机的电源功耗日益增多,使得能源的应用效率低下,有效的电源管理,才能让“节能”的效益更加立竿见影。电源管理方面最重要的趋势,就是使待机功耗降至最低。一般可能认为,与工作时电源的耗电量比起来,电子设备待机时所消耗的电量是微乎其微。其实这与事实相去甚远,所以美国加州能源委员会(California Energy Commission, CEC)节能规范,以及能源
[电源管理]
低待机功耗手机充电器<font color='red'>电源</font>管理IC应用
集成PWM控制器在不间断电源系统中的应用
摘要:随着集成电路设计技术的发展,在片上系统(SoC)中,越来越多地使用各种功能IP核部件构成系统。总线是这些部件连接的主要方式,目前有数家公司和组织研发了多种面向SoC设计的总线系统。本文介绍SoC中常用的三种片上总线AMBA、Wishbone和Avalon,分析和比较其特性,并针对其不同的特点阐述其使用范围。 关键词:SoC 片上总线 AMBA Wishbone Avalon 引 言 嵌入式系统是当今计算机工业发展的一个热点。随着超大规模集成电路的迅速发展,半导体工业进入深亚微米时代,器件特征尺寸越来越小,芯片规模越来越大,可以在单芯片上集成上百万到数亿只晶体管。如此密集的集成度使我们现在能够在一小块芯片上把以前由C
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved