电源知识大汇总 了解电源之EMI电路

最新更新时间:2014-10-25来源: 互联网关键字:电源知识  EMI电路 手机看文章 扫描二维码
随时随地手机看文章

在工作时,开关晶体管会产生大量的EMI和RFI,而这会严重的影响到屋内其它电子设备的正常工作。所以为了保证不受到电网中的输入噪声和传出电压浪涌峰值的影响,这就需要在的这一个阶段进行一个双向的保护措施。

市电电流进入电源首先要经过EMI滤波器的过滤

噪音(Noise),根据传导模式可以分为两种类型:共模噪音(CMN)和差模噪音(DMN)。

 共模、差模过滤1.共模噪声(CMN)是在使用交流电源的电气设备的输入端(输电线和中线)都存在这种噪声,两者对地的相位保持同相。通过在电磁干扰滤波器中放置与每条输电线串联的电感,并在两个输电线和地之间使用Y电容进行连接,来予以抑制。

2.差模噪声(DMN)是来自电源火线而经由中线返回的噪声,存在于交流线路和中性导线中。


EMI滤波电路的位置在整流桥之前,因为这样设计就可以在电流通过整流桥二极管之前对噪声进行过滤。在EMI滤波电流的组成部分中,必须要有两个Y电容和两个X电容,两个电磁线圈,一个MOV(压敏电阻)以及一个保险丝,这些组成部分缺一不可。另外,这里需要简单介绍一下,MOV是的全名叫做“压敏电阻器”,主要是在电网浪涌电压峰值时,对电源起到保护作用。

然而,在一些低端电源产品中,有些制造商会省略掉这个MOV,用来节省成本。如果你的电源里在中,没有MOV的话,那么最好连接一个带有浪涌保护器的电源插座或者UPS电源,否则会对你的电源以及硬件系统造成很大的损害。

一般在EMI滤波电路之后,会设有一个热敏电阻NTC(全名:负温度系数热敏电阻器,温度越高时电阻值越低),通常会被用于在大电流进入的时候,对电源内部元件进行保护。热敏电阻有如其名,是一个通过温度高低控制电阻阻值高低的电阻器。当热敏电阻温度低的时候,电阻阻值通常在6-12欧姆左右,当电源启动后,电阻器温度升高,阻值大约为0.5-1欧姆左右。

对于高性能的电源,则会配有一个继电器,在电源启动之后则会绕过热敏电阻,减少电力的热量损失,对于电源效率的提升起到一定的帮助。

关键字:电源知识  EMI电路 编辑:探路者 引用地址:电源知识大汇总 了解电源之EMI电路

上一篇:技术知识学堂:电源的拓扑结构大揭秘之电源篇
下一篇:电源知识大汇总 了解电源之主控开关

推荐阅读最新更新时间:2023-10-12 22:47

电源知识大汇总 了解电源之PFC电路
主动PFC更利于电网节能 不过在数年前,许多的 电源 厂商大多都在电源产品中使用被动PFC模块。而PFC模块则是一个减少谐波电流,并且将非线性负载转换成线性负载的过滤器,电容和电感所产生的功率因数则会向单位值跟近一些。 因此,接下来要说的,就是主动PFC和被动 PFC电路 。被动PFC相对主动PFC,功率因数较低,并且被动PFC只适用于230V高压电网,对于115V低压电网,被动PFC还需要一个倍压器以适应电网规格。不过,被动PFC比主动PFC的效能要高! 对于主动PFC来说,它基本上是一个通过PWM(脉冲宽度调制)控制电流波形的AC/DC整流器。在最开始,AC电压通过整流桥整流。然后PWM触发主动PFC电路中的MOSFET
[电源管理]
<font color='red'>电源</font><font color='red'>知识</font>大汇总 了解<font color='red'>电源</font>之PFC<font color='red'>电路</font>
电源基础知识普及:电感的磁学
几个定义: 1. 磁场强度H,单位:A/m(从量纲可知,此物理量于电流同生共死。可以理解为一种电流的别名,存在的依据是安培环路定理) 2. 磁感应强度B,单位:wb/m2或T(是一种依靠磁导率u与H相互依存的物理量) 3. 磁导率u,B=uH。在MKS中,单位为:H/m。 4. 磁通=面积X磁感应强度 5. 磁链=匝数X磁通 6. 电感=磁链/电流 由以上定律结合电磁学各种方程,可以得出以下等式: 1. (安培环路定则) 2. (法拉第电磁感应定律) 3. (坡印亭定理) 另外可以得到如下有用结论: 1. 相同磁芯下,电感值
[电源管理]
扩频降低EMI的DC/DC稳压器电路设计
  引言     在密集排列的系统电路板上,开关模式DC/DC稳压器具有较低的热耗散。然而,电流的快速切换、定义不完备的布局、电感器等组件的放置和选择使组成的电路有可能成为主要的EMI(电磁干扰)源。此外,当多个DC/DC开关模式稳压器并联潜在的干扰和噪声问题可能恶化。如果所有组件都在类似的频率工作(切换),能量都集中在一个频率上。这种能量的存在可能成为一个隐忧,尤其是当PC板上其余的IC及其它系统电路板互相靠得很近,易受这种辐射能量的影响时。一种解决方案是,将这种能量扩展到很多频率,而不是集中在一个频率,从而降低其幅度和强度。   这种方案采用了一个扩展频谱频率调制(SSFM)时钟。运用扩频方法来降低EMI,旨在使时钟保持运动
[电源管理]
扩频降低<font color='red'>EMI</font>的DC/DC稳压器<font color='red'>电路</font>设计
如何在拥挤的电路板上实现低EMI的高效电源设计?
有限且不断缩小的电路板空间、紧张的设计周期以及严格的电磁干扰(EMI)规范(例如CISPR 32和CISPR 25)这些限制因素,都导致获得具有高效率和良好热性能电源的难度很大。在整个设计周期中,电源设计通常基本处于设计过程的最后阶段,设计人员需要努力将复杂的电源挤进更紧凑的空间,这使问题变得更加复杂,非常令人沮丧。为了按时完成设计,只能在性能方面做些让步,把问题丢给测试和验证环节去处理。简单、高性能和解决方案尺寸三个考虑因素通常相互冲突:只能优先考虑一两个,而放弃第三个,尤其当设计期限临近时。牺牲一些性能变得司空见惯;其实不应该是这样的。 本文首先概述了在复杂的电子系统中电源带来的严重问题:即EMI,通常简称为噪声。
[电源管理]
如何在拥挤的<font color='red'>电路</font>板上实现低<font color='red'>EMI</font>的高效<font color='red'>电源</font>设计?
小心构建电路板 防止掉入EMI陷阱
电磁干扰(EMI) 是我们生活的一部分。随着时间的推移,有意和无意的EMI 辐射源的大量产生会对电路造成严重的破坏。这些辐射源的信号并非一定会污染电路,但我们的目的就是要让低噪声系统远离这些危害。   我们可以设想,一名医生使用一台心电图诊断设备,想要准确地对心脏进行诊断。在知道这是一台高精密的测量设备后,我们便不会担心讨厌的噪声会出现在诊断结果中。这是一种低频测量,电子设备不会超过1MHz。但是,如果使用的是一台EMI 设计糟糕的ECG 设备,而这时医生又在检查期间使用手机接电话,那么就有理由担心诊断结果了。请参见图1。      图1 1.5 英尺以外的发射器(f = 470 MHz, P= 0.5W)开启和
[模拟电子]
小心构建<font color='red'>电路</font>板 防止掉入<font color='red'>EMI</font>陷阱
电源网格的基本知识介绍
  VDD网络上的电压下降(IR)和VSS网络上的地线反弹会影响设计的整个时序和功能,如果忽视它们的存在,很可能导致芯片设计的失败。电源网格中的大电流也会引起电迁移(EMI)效应,在芯片的正常寿命时间内会引起电源网格的金属线性能劣化。这些不良效应最终将造成代价不菲的现场故障和严重的产品可靠性问题。    电源网格的IR压降和地线反弹   引起VDD网络上IR压降的原因是,晶体管或门的工作电流从VDD I/O引脚流出后要经过电源网格的RC网络,从而使到达器件的VDD电压有所下降。地线反弹现象与此类似,电流流回VSS引脚时也要经过RC网络,从而导致到达器件的VSS电压有所上升。更加精细的设计工艺和下一代设计技术使新的设计在IR压降或
[电源管理]
电脑电源基础知识小汇
电源 ,一直在电脑配件中不起眼,但随着处理器、显卡等新产品的不断升级,功耗也在逐步攀升。现在电脑中除了显示器之外,其他所有的配件都需要电源提供动力。所以一款品质优秀的电源(如能够提供稳定的电压、纹波小、动态响应迅速和良好的转换效率)对于系统是极为重要的。如果你的电脑频繁死机、重启,甚至经常出现一些莫名其妙的故障,那么你就要注意一下电源了。 电脑的“发动机”——电源 不少用户在升级一些旧配件后,却发现升级后的电脑经常出现故障,这是由于原来的电源功率已经不能满足新配件的需求了。 电源对电脑里的配件而言,就像是一个发动机,为各个配件提供足够的动力,让它们更好的工作。但电源并不是一个能量来源,只是一个将民用交流电经过
[电源管理]
电子基础知识:如何选择和使用安全电源
今天,电源用户面对无数的选择,电源产品的众多性能和电源供应商的长的产品规范说明书,使选购电源成为令头痛的事情。可喜的现在有很多的工艺标准技术规范,可以帮助工程师选购可靠且安全的电源。   安全第一   电源设备需要提供隔离功能,从而保证电源设备的安全性,免受来自高压馈电线的危险,是最基本的也是常常容易被忽视的。电源设备的这种安全性是由电源变压器实现的,于是,为了使变压器能传送足够的电力就要求它必须具备相应的规模。   一台较大的变压器通常装备有散热器,这样可以获得良好的产品寿命。此外,在变压器的原边和副边线圈之间还要使用双重隔离,从而保证最大的安全性。   可靠性   人们常常单纯要求电源产品的寿命,其实,影响电源寿命
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved