1.工作原理
接通电源后,加热电阻通过继电器的常闭触点接人220V交流电路中,加热开始。此时温度为常温,负温度系数的热敏电阻为lOkΩ,随着加热的进行,Rt阻值不断下降,Uref开始上升,此时调节Rpl亦可改变决定温度的上限温度控制点T1。
当温度达到控温点时.Rt=Rtl,Uref=UCC*R2/(R2+R11上》2.5V,运算放大器输出为高电平,内部三极管导通,继电器吸合.常闭触点断开,加热停止。同时继电器的另一组常开触点闭合,使Rp2+R3与R11并联,使Uref进一步上升,此电路是一个简单的滞回电路。
通过调节Rp2可调节温控器的下限温度控制点T2。随着加热的停止,温度开始慢慢的回落.Rt逐步增大,即当Rt=Rtl时.由于Rp2+R3并联电路 的接人.Uref仍大于2.5V,输出三极管继续导通,维持继电器在吸合状态,加热电阻器仍处在断电状态。只有当温度下降到温度的下限阈值T2 时.Rt=Rt2,Uref=Uc-cxR2/(R2+RI1下)《2.5V运算放大器输出低电平,内部三极管截止,继电器释放.常开触点断开退出 所接电路,同时常闭触点复位,加热重新开始。周而复始,通过控制加热电阻使温度在范围T1~T2内稳定。实验中发现,即使不要Rp2+R3这部分电阻,电 路也不会出现热振荡(即稳度在Tl点上继电器不停的切换),这是因为热存在惰性的原因。但加入Rp+R3后会更加可靠,有一个温度的阈值范围T1~T2. 这个值可通过Rpl和Rp2进行调节来实现。
2.电路调试
本电路十分简单.因为TIA31具有 lOOmA的驱动能力,可直接驱动小型继电器,所以电路板可用洞洞板来制作。比较难的是电路调试,这里采用10kΩ负温度系数的测温用热敏电阻,精度比较高。接通电路后,加热开始.10kΩ测温电阻置入温控室内,同时放入温度计,当温度上升到设定的上限温度值Tl时.调节Rp1.使TL431导通,继电器 吸合。继续观察当温度下降到下限温控值T2时,调节Rp2使TL431截止,继电器释放。由于测温电阻的非线性,所以电位器Rp1、Rp2的标示也可能出 现非线性.只要标注几个关键点即可。
此温控电路仅使用一支TL431就完成了温度在一个范围内的设定与控制.简单实用,性价比高.非常适合于学生和电子爱好者制作。
关键字:TL431 可变分压型 稳压温控
编辑:探路者 引用地址:TL431可变分压型稳压温控集成电路图
推荐阅读最新更新时间:2023-10-12 22:48
TL431低压差直流电源参数参考及工作点设置
TL431 作为一种精密稳压源,被大量应用在电子电路设计当中,由于拥有独特的动态抗阻,TL431也经常被作为稳压 二极管 来使用。稳压源在电路中的使用相当广泛,多数使用3个引脚构成,所以结构简单并且使用起来也比较方便。但是在只有较低电压电池供电时, 稳压电源 的供电需求有可能增加20%~40%的成本及体积。针对这种情况,本篇文章主要介绍了一种低压差稳压 直流电源 电路的设计方法,电路器件选用常规器件,成本低,并且具有很好的负载特性和电压稳定性。 电路工作原理 图1为低压层直流稳压电源电路原理图。该电路是由基准电压、电压放大和电流放大等3个环节组成。其中,基准电压由TL431产生,按图1中电路连接,当通过R0的电流在0.5~10
[电源管理]
TL431特性及应用
德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
左图是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。TL431的具体功能可以用如图1的功能模块示意。
由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才
[应用]
如何正确理解TL431的工作方式
TL431有着较为特殊的动态抗阻,是一种较为精密的可控稳压源,在电路当中,TL431也作为一种并联型的稳压电路来使用,当然使用方法并不局限在这一种,其还能够作为串联或电压基准来使用。TL431的主要作用是使电路获得更加稳定的电压,虽然人们都知道使用TL431,但是并没有几个人对其工作原理进行深入的剖析,本篇文章就将为大家介绍关于TL431工作方式的另一种理解方式。 说到TL431的工作方式,很多人想到的必然是TL431+PC817的电源电路。其实任何基于431手册中的稳压电路,都可以有合理的电路模型。 而TL431和PC817的反激电源中的TL431,却无法,或很难解释。 图1是TL431的内部原理图
[电源管理]
精确控制成本 TL431在反馈回路中的应用
在众多电路设计当中, TL431 是一种被广泛应用于开关电源的可控精密稳压源。并且TL431拥有良好的参考电压和运放,所以能够很好的减少在控制回路上的成本投入。本篇文章主要对TL431的反馈回路设计进行了探讨。 通常放大器反馈 如图1,由运放和参考构成的电路(在非隔离电路通常由脉宽控制器提供)2型补偿网络.适用于被多数工程师采用的电流模控制. 低频增益由R1 C1提供.数倍低于带宽的频率有一个零点,中频带增益由R2比R1决定.根据功率部分特性确定的高频段,电路又是积分形式,增益由R1C2决定. 波特图如下: 用TL431实现分立器件的功能没什么不同.如图2. 区别是1. R5上拉电阻(提供足够电流)。2. 431电路驱
[电源管理]
TL431偏置电流的正确设置
众所周知,TL431在开关电源(SMPS)反馈环路中是参考电压。该器件结合了参考电压与集电极开路误差放大器,具有操作简单和成本低廉等优点。虽然TL431已在业内被长期广泛采用,但一些设计人员仍会忽略它的偏置电流,以致在无意间降低产品的最终性能。 TL431的简化电路图如图1所示,图中包括了驱动NPN 晶体管的参考电压和误差放大器,在该封闭的电源系统中,一部分输出电压一直与TL431的Vref(参考电压)进行比较。 图1 TL431等效电路图
转换器简化直流模型如图2所示,Vout与Vref通过受传输率影响的电阻分压器进行比较,可得到输出电压
[电源管理]
TL431可变分压型稳压温控集成电路图
1.工作原理 接通电源后,加热电阻通过继电器的常闭触点接人220V交流电路中,加热开始。此时温度为常温,负温度系数的热敏电阻为lOkΩ,随着加热的进行,Rt阻值不断下降,Uref开始上升,此时调节Rpl亦可改变决定温度的上限温度控制点T1。 当温度达到控温点时.Rt=Rtl,Uref=UCC*R2/(R2+R11上》2.5V,运算放大器输出为高电平,内部三极管导通,继电器吸合.常闭触点断开,加热停止。同时继电器的另一组常开触点闭合,使Rp2+R3与R11并联,使Uref进一步上升,此电路是一个简单的滞回电路。 通过调节Rp2可调节温控器的下限温度控制点T2。随着加热的停止,温度开始慢慢的回落.Rt逐步增大,即当
[电源管理]
精确控制成本 TL431在反馈回路中的应用
在众多电路设计当中, TL431 是一种被广泛应用于开关电源的可控精密稳压源。并且TL431拥有良好的参考电压和运放,所以能够很好的减少在控制回路上的成本投入。本篇文章主要对TL431的反馈回路设计进行了探讨。 通常放大器反馈 如图1,由运放和参考构成的电路(在非隔离电路通常由脉宽控制器提供)2型补偿网络.适用于被多数工程师采用的电流模控制. 低频增益由R1 C1提供.数倍低于带宽的频率有一个零点,中频带增益由R2比R1决定.根据功率部分特性确定的高频段,电路又是积分形式,增益由R1C2决定. 波特图如下: 用TL431实现分立器件的功能没什么不同.如图2. 区别是1. R5上拉电阻(提供足够电流)。2. 431电路驱
[电源管理]