一种基于CMOS图像传感器和USB的指纹识别仪

最新更新时间:2014-11-23来源: 互联网关键字:CMOS图像  传感器 手机看文章 扫描二维码
随时随地手机看文章

  引 言

  CMOS图像传感器是近年来得到快速发展的一种新型固态图像传感器。它将图像传感部分和控制电路高度集成在同一芯片里,体积明显减小、功耗也大大降低,满足了对高度小型化、低功耗成像系统的要求。与传统的CCD图像传感器相比,CMOS图像传感器还具有集成度高、控制简单、价格低廉等诸多优点。因此随着CMOS集成电路工艺的不断进步和完善,CMOS图像传感器已经广泛应用于各种通用图像采集系统中。同时作为一种PC机与外围设备间的高速通信接口,USB 具有许多突出的有点: 连接简便,可热插拔,无需定位及运行安装程序,无需连接外设时关机及重启系统,实现真正的即插即用;高传输速率,USB 1.1协议支持12Mb/s;不占用系统硬件资源,能够自动检测和配置外围设备,不存在硬件冲突问题。

  因此,利用CMOS数字图像传感器与USB接口数据传输来实现的指纹识别仪具有结构简单,体积小,便携化等优点。现将介绍利用OMniVision公司的CMOS彩色数字图像传感器OV762M和cypress公司的EZ-USB AN2131QC USB控制传输芯片(内部集成了增强形51内核)来实现指纹信息的采集和USB传输,同时由于指纹传感器输出数据的速率(27MB/s)与USB控制器(AN2131QC)数据传输速率(12Mb/s)的不匹配,故系统采用了SRAM和CPLD构成中间高速缓冲区。

  系统结构

  应用AN2131QC、CPLD和OV762M设计的指纹识别系统硬件框图如图1所示:

  

 

  图1 指纹识别硬件系统简略框架图

  首先,AN2131QC通过I2C对指纹识别传感器(OV7620)的窗口设置等参数进行配置,光学透镜把像成在OV762M的像面上后,CMOS图像传感器(OV7620)对其进行空间采样,并按照一定的帧频连续输出8位的数字图像数据Y[7∶M](输出数字图像数据的帧同步信号为VSYNC,水平有效信号为HREF,输出时钟信号为PCLK)。为了实现指纹传感器输出数据与USB控制器(AN2131QC)读取数据速度与时序的匹配,使用了SRAM(IS61C1024)和CPLD构成高速缓冲区,利用此高速缓冲区将OV762M采集的指纹数据缓存。最后AN2131QC实现与上位机的USB通信,将高速缓冲区中数据的传输到PC机进行相应图像处理。

  CMOS数字图像传感器OV7620

  CMOS数字图像传感器OV762M集成了一个664×492 的感光阵列、帧(行)控制电路、视频时序产生电路、模拟信号处理电路、A/D转换电路、数字信号输出电路及寄存器I2C编程接口。感光阵列得到原始的彩色图像信号后,模拟处理电路完成诸如颜色分离与均衡、增益控制、gamMA校正、白电平调整等主要的信号处理工作,最后可根据需要输出多种标准的视频信号。视频时序产生电路用于产生行同步、场同步、混合视频同步等多种同步信号和像素时钟等多种内部时钟信号,外部控制器可通过I2C总线接口设置或读取OV762M的工作状态、工作方式以及数据的输出格式等。

  AN2131QC通过I2C总线接口设定OV762M的寄存器来控制输出帧率在0.5帧/s~3M帧/s之间变化,输出窗口在4×2~664×492 之间可调(默认输出640×48M的标准VGA格式),设置黑白平衡等。根据指纹采集的需要,窗口输出设置为: 320×288,经过设定后的OV762M输出时序如图2 所示:

  

 

  图2 0V762M输出时序

  VSYNC是垂直场同步信号(也是每帧同步信号,CMOS是按列采集图像的),其下降沿表示一帧图像的开始,HREF 提供了一种有效的控制方式,当输出像素行列分别处于设定窗口之间时HREF 为有效高电平,此时输出有效的视频数据,PCLK是输出数据同步信号,上升沿输出一个有效的像素Y[7∶M].

  基于CPLD技术的高速数据缓冲区的实现

  在由CPLD和SRAM构成的高速数据缓冲区中,CPLD充当了SRAM的控制器,其内部电路实现框图如图3所示:

  

 

  图3 SRAM高速缓冲区控制器的CPLD实现

  图3中ram_rd,raM_wr为输出到SRAM的读写信号线,raM_data,ram_addr为SRAM的数据地址总线;latch_f为SRAM的读写允许信号,当为高电平时允许对SRAM写操作,为低电平时允许对SRAM读操作;两个8路三态门用于隔离总线,当对SRAM写时,输出cpu_datA为高阻态,当对SRAM读时,将采集数据信号Y [7∶M]隔离;cpu_rds,vsync为开始读写信号,单个正脉冲将SRAM地址置0;cpu_rD作为SRAM快速读脉冲,pclk为SRAM写脉冲;irq为写满标志,用于向上提供中断标志;地址发生器用于产生SRAM地址(IS61C1024有17根地址线)。 

  由图3中逻辑知道,当允许对SRAM写(latch_f=1)且采集的数据有效(href=1)时,pclk脉冲通过地址发生器产生地址(sync单个正脉冲将SRAM地址复位到0),将采集的数据Y[7∶M]写入SRAM中,当写满(写完一帧的32M像素×288像素)时,irq信号有效,通过中断将latch_f置低允许将SRAM数据读出(cpu_rds单个正脉冲将SRAM地址复位到0),此后cpu_rD通过地址发生器产生地址将SRAM中数据读出到USB缓冲区。上述逻辑仿真波形如图4 所示(由于数据线和地址线较多,故只取其中部分信号时序,cpu_datA为X 表示其值根据SRAM数据总线上具体值而定),由图4 可知,CPLD实现了对SRAM的控制,与SRAM一起组成了高速数据缓冲区。

  USB 快速批量传输的实现

  USB 控制接口芯片AN2131QC特性简介

  AN2131QC是基于USB 1.1协议设计的,支持高速12Mb/s的传输速率,内嵌有增强型8051微控制器、8kB的RAM和一个智能USB内核的收发器,它包含一个I2C总线控制器和3个8位多功能I/O口,有8位数据总线和16位地址总线用于外部RAM扩展。其结构如图5所示。

  

 

  图5 AN2131QC结构简图

  AN2131QC内部的USB差分收发器连接到USB总线的D+和D-上。串行接口引擎(SIE)对USB总线上串行数据进行编码和译码(即实现USB协议的打包和解包工作),同时执行错误纠正、位填充及其它USB需要的信号标准,这种机制大大减轻了8051的工作,简化了固件的编程。内核微处理器是一个增强型8051,其指令周期为4 个时钟周期并具有双DPTR指针,同时指令与标准8051兼容。它使用内部RAM存储固件程序和数据,上电后,主机通过USB总线将固件程序和外设特性描述符下载到内部RAM(也可以直接从板上E2PROM上读取),然后重连接,按照下载的特性描速符进行重枚举,这种设计可以实现软件USB快速批量传输的实现。

  当采集的指纹数据导入了由SRAM和CPLD构成的高速数据缓冲缓冲区后,要通过USB接口将数据发送到上位PC机,AN2131QC必须先将数据读入到内部USB缓冲区,因此,AN2131QC将数据传到内部USB缓冲的速度将是整个USB数据传输速度快慢的关键。为了使USB数据传输(从外部读入数据并将之传到PC机)达到最快,需要采用很多措施,下面就设计指纹识别仪固件(AN2131QC程序)中采用的USB批量传输进行探讨。

  正常情况下,AN2131QC内核结构从外部读入数据到USB的端点缓冲区,要使用的汇编程序为:

  movx a,@dptr;读外部数据到acc寄存器incdptr;外部地址加1

  incdps;切换DPTR指针(内核有双DPTR指针,用dps进行切换)

  movx @dptr,a;将acc内容放入USB缓冲区

  incdptr;USB缓冲区地址加1

  incdps;切换DPTR指针

  由上述程序可知,数据在寄存器中完成操作后,都必须有一个“incdptr”和“incdps”指令来完成16位地址的增加和缓冲区指针切换。为了消除这种内部消耗,使用AN2131QC提供的一种特殊的硬件指针即自动指针(只用于内部缓冲区),8051装载USB缓冲区地址到两个AUTOPTRH (高字节地址)和AUTOPTRL(低字节地址)寄存器中,向AUTODATA写入的数据就直接存入由AUTOPTR/H2L指向的地址缓冲区中,并且内核自动增加AUTOPTR/H2L中16位地址的值。这样USB缓冲区可以像FIFO一样来顺序写入数据,节省了每次写内部USB缓冲区时的“incdptr”指令。同时内核还提供一种快速模式(只用于对外部数据操作),此模式从外部读数据“movx a,@dptr”时,直接将外部数据总线和内部缓冲区连在一起,由于使用CPLD和SRAM构成的指纹高速缓冲区具有FIFO的性质,所以使用快速模式读外部指纹数据时也节省了“incdptr”指令。将上述两种方式结合起来,读外部数据到内部缓冲区程序就只需要一条指令:movx @dptr,A(dptR存放AUTODATA寄存器地址),此指令需要两个8051机器周期(8个24MHz时钟周期)。这样,一个字节可以在333ns内读入到USB端点缓冲区。

  在USB接口数据传输一侧,当PC机要对一特定端点进行读数据并发送IN令牌,如果一个IN令牌到达时8051还没有完成向USB端点缓冲区的数据装载(读外部数据),AN2131QC就发送一个NAK握手信号来响应IN令牌,表明PC机应该在稍后再发送一个IN令牌。为了解决这种等待从而达到最快的传输速度,可以使用双缓冲技术(端点配对),使8051在前一个数据包在USB总线上传输的时候,装载块数据的下一个数据包。

  结 论

  利用CMOS数字图像传感器OV762M和USB控制器AN2131QC实现的指纹仪结构简单,体积小,使用方便。指纹识别系统中使用CPLD技术实现了高速缓冲,解决了速度时序匹配问题;使用了快速批量USB传输技术实现了数据的快速传输,使指纹数据的传输达到最高速(每帧传输只用80Ms)。使用现论述的方法实现的指纹仪采集的指纹数据经PC机重现后效果如图6所示(左图是未经任何处理的重现,右图是经过平滑、细化等算法处理后的重现)。

  

 

  图6 采集指纹重现效果(处理前后)

关键字:CMOS图像  传感器 编辑:探路者 引用地址:一种基于CMOS图像传感器和USB的指纹识别仪

上一篇:图像采集综合评估的嵌入式指纹识别系统
下一篇:为FPGA供电的挑战和应对

推荐阅读最新更新时间:2023-10-12 22:49

苹果申请AR/VR设备专利:手指套设计集成了多种传感器
据外媒 MacRumors 报道,苹果已向美国专利和商标局递交了一份带有一系列传感器和触觉反馈的设备,该设备是为手指设计的,可能用于 VR 或 AR 设备的控制装置。   IT之家了解到,苹果递交的这份名为《带有传感器和触觉的手指装置》的专利申请文件,详细解释了该设备是如何用于无线控制计算机和 “虚拟现实内容和 / 或头戴式显示器扩增实境内容”的 “手指控制装置系统”。   在文件中,苹果承认,一些可穿戴控制设备的方案可能类似于带有传感器的手套,用于检测手部运动。但苹果表示,手指设备有一些优点,比如保留了在用户周围环境中感受物体的能力,并保持了舒适性。   在设计方面,该设备有两个小侧壁,可以用磁铁或弹簧扣住手指,因
[手机便携]
略谈变压器的在线监测
  随着国民经济的发展,电力事业迅速增长,装机容量和电网规模日益增大,人们对电力系统中设备的运行可靠性的要求不断提高,在现代电力设备的运行和维护中,电力变压器不仅属于电力系统中最重要的和最昂贵的设备之列,而且是导致电力系统事故最多的设备之一,它的故障可能对电力系统和用户造成重大的危害和影响。因此国内外一直把电力变压器在线检测与诊断技术作为重要的科研攻关项目,现今大多数运用的技术有局部放电法,和变压器油色譜分析法等。      一、变压器在线监测研究现状       (一)变压器局部放电(PD)在线监测   1.原理:变压器故障的主要原因是绝缘损坏,在故障前有局部放电产生,且伴随下列信号:电流脉冲,电波、超声波,C2H2,C2H4,C
[电源管理]
艾迈斯半导体全新光学传感器让您拍出无失真照片
摘要:新推出的TCS3408使智能手机摄像头图像系统在所有光照条件下,都能准确测量和消除环境光闪变 高性能传感器解决方案供应商艾迈斯半导体推出新款传感器解决方案---TCS3408,帮助配备滚动快门图像传感器的手机后置摄像头消除由于人造光源闪烁所导致的例如条带和其他图像伪影的影响。 随着LED的广泛使用,手机摄影越来越受到光源闪变的困扰。ams最新推出的TCS3408颜色传感器具备更高的准确度和灵敏度,不仅可用于测量环境光的色温和光强,还可以检测光学的物理闪烁,使得手机摄像头图像增强系统能够消除人造光源导致的缺陷伪影。它所提供的业内最高水平的片上光源闪烁检测灵敏度比上一代TCS3707高出三倍。 艾迈斯半导体集成
[传感器]
艾迈斯半导体全新光学<font color='red'>传感器</font>让您拍出无失真照片
新型CMOS图像传感器原理及应用
金属氧化物半导体元件(Complementary Metal-Oxide Semiconductor,CMOS)图像传感器和电荷耦合元件(Charge Coupled Device,CCD)摄像器件在20年前几乎是同时起步的。CCD是应用在摄影摄像方面的高端技术元件,CMOS则应用于较低影像品质的产品中。 由于CCD器件有光照灵敏度高、噪音低、像素小等优点,所以在过去15年里它一直主宰着图像传感器市场。与之相反,CMOS图像传感器过去存在着像素大,信噪比小,分辨率低这些缺点,一直无法和CCD技术抗衡。但是随着大规模集成电路技术的不断发展,过去CMOS图像传感器制造工艺中不易解决的技术难关现已都能找到相应解决的途径,从而大大改善
[嵌入式]
全球传感器数量到2030年将突破100万亿个
      随着我国对智能化仪表设备的需求不断提升,促使工业传感器也在不断突破,智能传感器已经成为了21世纪最具有影响力的高新技术。近日,我国首个传感器产业园的建成,也推动我国未来传感器的发展。据资料预测,到2030年,全球传感器数量将突破100万亿个,未来,工业传感器将成为自动化仪表生产重点。           传感器市场潜力巨大          自“十二五”规划以来,高端装备制造业发展已经成为了战略新兴产业的重要内容,无论是在工业生产中、还是海洋探测、环境监测、核能检测等,智能传感器都得到了越来越多的重视。作为高端新型产业的主要对象,传感器行业既面对着压力,同时也获得了飞速发展机会,这对于行业突破是大有裨益
[安防电子]
Melexis推出首款第三代电流传感器芯片MLX91230
Melexis 推出首款第三代 电流 传感器 芯片 MLX91230。这种数字解决方案可提供 0.5% 的精度,设计紧凑,价格实惠。该 产品 集成了 IVT(Current - Voltage - Te mperature)测量功能,内置有 微控制器 ( MCU ),可减轻 ECU 的处理负担,并且具有预装的安全功能。MLX91230 是电动汽车电池管理和配电系统的理想选择。 ▼ 现有技术的解决方案 在电动汽车设计中,经常出现这样一个问题:设计人员对简便易用的分流技术青睐有加,但却难以控制热预算。当通过传感器芯片的电流增加时,需要减小电阻以保持相同的热损耗(由于系统不平衡)。同样,采用磁通门技术的设计人员虽然获得了电
[汽车电子]
Melexis推出首款第三代电流<font color='red'>传感器</font>芯片MLX91230
无人驾驶汽车新型超快速智能摄像头发布 或于2017商用
为了避免交通事故,无人驾驶汽车(以及无人机)需要对传感器采集的周边信息进行快速处理。但在遭遇极端道路条件和恶劣天气的情况下,传统光学摄像头难以胜任这项工作。为了提升此类应用的视觉信息处理表现,新加坡南洋理工大学的一支研究团队,就从“源头”着手,开发出了一种新型“超快速、高对比度”智能摄像头。 Chen Shoushun 带头开发了一种超快速摄像头,其采用了独特的内置电路。 南洋理工(NUT)助理教授 Chen Shoushun 带队开发的新款摄像头,能够记录下场景间纳秒级的光强度变化,从而实时监测物体的运动。 过去十年,无人驾驶汽车技术已经取得了长足的进步,以 Google 和 Uber 为代表的多家高科技企业(以及传统汽车制造
[汽车电子]
物联网无线传感器节点设计
无线传感器节点(WSN )在促进物联网(IoT)发展方面发挥着关键作用。WSN的优点在于,它的功耗极低,尺寸极小,安装简便。对很多物联网的应用而言,譬如安装在室外的应用,WSN 可使用太阳能供电。当室内有光,系统就由太阳光供电,同时为微小纽扣电池或超级电容器充电,以在没有光的情况下为系统供电。 在一般情况下,无线传感器节点是以传感器为基础的设备,负责监测温度、湿度或压力等环境。节点从任何类型的传感器收集数据,然后以无线方式传递数据到控制单位,譬如计算机或移动设备,并在此处理、评估数据,并采取行动。理想情况下,节点可以由能量收集机制获得作业电源,成为独立运作的设备。从一般意义上讲,能量收集的过程是捕捉并转换来自光、振动,或热等
[物联网]
物联网无线<font color='red'>传感器</font>节点设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved