2.45GHzWLAN功率放大器设计

最新更新时间:2014-11-23来源: 互联网关键字:2.45GHz  WLAN  功率放大器 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  近年来,随着无线通信技术的迅速发展,对全集成、高性能、低成本的无线收发机的需求变得越来越迫切。而发射机系统中的一个关键模块就是功率放大器,从功耗方面考虑,功率放大器的功率损耗在发射机的总功耗中占有很大比例。于是一个高效率的CMOS 功率放大器的设计就显得尤为重要。而随着RF CMOS技术的不断发展 ,使得基于Si CMOS工艺的射频集成电路在GHz频段上的性能上有了很大的提高,而且它具有高集成度、低功耗、低成本的特点,能够和基带数字电路相兼容。最终可以实现片上系统集成(SOC)。所以近年来对于Si的CMOS射频集成电路的研究成为国际上研究的热点。

  功率放大器通常分为线性和非线性两大类,线性放大器有四种: A、B 、AB和 C,它们的主要差别在于栅极偏置情况不同,这类传统的功率放大器具有较高的线性度,但效率较低;非线性放大器主要有D、E和F。对于本文的无线局域网而言,由于要求具备高线性。所以两级分别采用的是A和AB类放大模式。

  2 功率放大器的电路设计

  一个典型的功率放大器一般包括输入匹配网络、晶体管放大电路、级间匹配网络、偏置网络和输出阻抗匹配网络等 ,如下图1所示。

  

 

  图1 功率放大器结构框图

  2.1 自偏置共源共栅(Cascode)结构

  对于功放而言,标准的0.18um CMOS工艺的晶体管漏栅间的最大电源电压为2V,击穿电压大约是4V。在功放中,管子漏端的直流与交流电压之和可达到2-3倍的电源电压,这就给管子的栅氧化层带来击穿的危险。在设计PA时,晶体管所能承受的最高电压Vmax受到晶体管击穿电压的限制,而最小电压则受到Knee电压的限制。而功率放大器采用Cascode结构可以缓解晶体管击穿的压力,提高功率放大器输出电压的摆幅,从而降低对晶体管最大电流能力的要求,提高功率放大器的效率,并减小输出晶体管的尺寸。实际在共源共栅结构的放大器中,共栅晶体管是电压击穿和热载流子效应的瓶颈。

  所以本文采用了Cascode自偏置结构和厚栅器件,不仅可以改善深亚微米CMOS器件的低击穿电压,同时还可以减小热载流子效应影响。图3所示的传统Cascode放大器中M2的栅漏电压波形,Vg2一直固定在3V,Vd2的正峰值电压在4.8V,所以栅漏电压差为1.8V。为了克服这个问题,图4所示为自偏置Cascode结构放大电路,该结构把M2管的漏端交流电压Vd2引入到栅端Vg2上,使我们在设计功放时两个MOS管尽可能有相同的最大漏栅电压。所以,在热载流子效应出现之前M2管有一个大的信号摆幅。对G2的偏置是通过Rb-Cb来实现的。图6所示为M2管的Vd2对Vg2的电压波形,其最大电压差为1.4V。与传统电路比较降低了0.4V,所以自偏置的M2管的Vdg的电压差相对传统结构的M2管降低了23%。

  

 

  图2 传统的Cascode放大器

  

 

  图3 传统的Cascode放大器中M2的栅漏电压波形

  

 

  图4 自偏置Cascode放大器

  

 

  图5 自偏置Cascode放大器的等效电路图

  根据上面的等效电路图,我们能够得到两个

的表达式:

 

  

(1)

 

  

(2)

 

  同理,我们也可以得到两个

的表达式:

 

  

 

  (3)

  

(4)

 

  把(2)式代入式(3)和式(4),并令它们相等可得下面的增益表达式:

  

(5)

 

  

(6)

  

(7)

 

  

(8)

 

  从(8)式的增益表达式可知,如果Rb或cb增加,放大器的增益都会有所增加,但是通过电路仿真后的电压波形可知,若Rb或cb增加,导致Vg2的电压摆幅的降低,从而漏端节点电压波形将会在输入功率较低的情况下就开始失真。所以Rb或cb的值不仅要依据M1和M2管尽可能有相同的栅漏信号摆幅,同时也力求在增益和线性之间有个较好的折中来确定。

  

 

  图6 自偏置Cascode放大器中M2的栅漏电压波形

  2.2 功率放大器的设计与仿真

  对于本文的无线局域网应用而言,由于采用的是非恒包络调制,要求具备高线性,所以本功率放大器第一级工作在A类,第二级工作在AB类。A类放大模式能提供更好的线性度,而AB类放大模式比A类放大模式又具备更高的效率。所以,本文的功放在线性度和效率之间进行了较好的折中。

  2.2.1 放大电路设计

  为了达到功放的设计要求,由于高频下单级放大器不能实现预定的功率增益指标,所以采用两级放大结构。如图7所示,第一级采用共源共栅结构,在提供合适的电压增益的同时 ,提高了前后级电路的隔离度,为阻抗匹配提供了便利条件。第二级采用的是厚栅的共源结构以承受更高的电源电压。主体分为以下几个部分:(1) C1、C2、L1为输入阻抗匹配,片内实现,使电路的输入端与50Ω端口匹配。

  L3为第一级放大电路的扼流电感,考虑到功放中流过的电流很大,片外实现。(2) M1与M2为驱动级。(3) C5、C6、L4为级间匹配网络,除了两级之间匹配外,还可以用于调整放大电路的增益平坦度[5]。(4) M3为功率级。(5) C8、C9、L7构成∏型输出匹配网络,能够有效抑制偶次谐波分量,实现最佳负载匹配[6]。为了减少损耗,输出匹配网络C8、C9、L7和扼流电感L6也采用片外实现。(6) CMOS的接地电感对放大器的增益和效率有很大影响,所以在电路仿真时把键合线和pad的寄生效应一起考虑了。其中L2和L5为多PAD的键合线电感。

  

 

  图7 功率放大器电路图

  2.2.2 仿真结果

  电路的性能仿真和优化是利用Agilent 公司的ADS(Advanced Design System)软件完成的。放大器中的晶体管工作在大信号状态,非线性效应非常显著,因此设计放大器电路时,小信号电路的等效模型不再适用,必须充分考虑晶体管的非线性特性。图8为仿真得到的输出功率、增益和PAE随输入功率的变化曲线。由图可知,在输入功率小于0dBm的信号范围内,该功放的增益有22dB。在1dB功率增益压缩点处输出功率为22dBm,相应的PAE为30.4%。图9为功放的S11参数随频率的变化曲线图,由图可知,S11在中心频率2.45GHz附近都小于-20dB所以输入匹配基本达到设计要求。

  

 

  图8 输出功率、增益和PAE随输入功率的变化曲线

  另外,仿真所得到的其它重要参数有:输出三阶交接点约为29 dBm;稳定因子K在工作频段内有K>1。

  

 

  图9 功放的S11参数曲线

  2.2.3 版图设计

  版图设计采用了 Cadence软件。功率放大器采用 SMIC 0.18μm CMOS工艺。其中放大电路中使用的晶体管采用射频模型。本版图设计主要考虑了以下几个方面的问题:

  (1)由于功放中流过的电流很大,所以在电源线和地线采用几层金属并联的方式来避免发生电迁移。(2)接地键合线的寄生电感严重影响各级电路的功率输出。所以,为了使接地键合线寄生电感尽量小,设置多个对地焊盘并引出多条键合线到地线上。(3)对于高频信号线 ,尽量采用顶层和上层金属 ,且最好遵循最短信号线的原则用于减少寄生电容、耦合等因素引起的损耗。

  

 

  图10 PA版图

  3 结论

  采用SMIC 0.18um CMOS 工艺RF模型设计了工作于2.45GHz WLAN的功率放大器。通过自偏置技术的应用,该功放工作在3V电源电压下,其仿真性能指标表明最大输出功率可达24.5dBm,对应的PAE达到40%,功率增益为23dB,适合无线局域网802.11b的系统应用。

关键字:2.45GHz  WLAN  功率放大器 编辑:探路者 引用地址:2.45GHzWLAN功率放大器设计

上一篇:选择PCB元件的六大技巧
下一篇:线性光电隔离电子电路的设计

推荐阅读最新更新时间:2023-10-12 22:49

硅锗技术以功率放大器进军无线通信和手机应用领域
随着工艺进步,硅锗技术业已用于CDMA、GSM和 WLAN 应用中的高功率放大器,提供新一代集成解决方案   现今,硅锗 (silicon germanium, SiGe) 技术已经从一种富有潜力的技术,发展成为目前和新一代移动设备的先进解决方案,广泛应用于手机、无线局域网 (WLAN) 和蓝牙等产品。自上世纪 80 年代问世以来,SiGe 一直是那些追求低成本,并要求性能高于普通硅器件的高频应用开发人员最感兴趣的一种半导体材料。在无线通信应用中,这种技术已被广泛接受,用于下变频器、低噪声放大器 (low-noise amplifier, LNA)、前置放大器 (preamplifier) 和 WLAN 功率放大器 (power
[半导体设计/制造]
同轴变换器原理及射频功率放大器宽带匹配设计
射频功率放大器的宽带匹配设计 在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽
[电源管理]
同轴变换器原理及射频<font color='red'>功率放大器</font>宽带匹配设计
带有BOM的HiFi功率放大器设计
这是个简单的低成功率放大器。你可以有5种方法完成她,就像图表中所指示的(从20W到80W RMS ). 说明注释:-你首先要作的是测试末极功率管的放大系数hfe or β.如果他们的差异大于30%,放大器将不会给你提供一个清晰的声音,我使用的是MJ3001和 MJ2501晶体管,他们的差异在5%. -在开机之前,你必须把输入端短路,在放大器的输出端串入一个电流表,然后打开电源,调整R13使电流表电流到微安培级,如果你足够幸运,或许可以达到0,电流表电流在10微安培是很容易做到的。 功率放大器电路图: 电源电路: 元件及参数表: 20 / 35 W 25 / 40 W
[模拟电子]
带有BOM的HiFi<font color='red'>功率放大器</font>设计
R&S为FSL频谱分析仪新增WLAN测量功能
罗德史瓦兹(Rohde & Schwarz,R&S)推出FSL频谱分析仪,适合研发、维修服务和生产线应用;该公司并进一步开发出针对该频谱分析仪设计的WLAN应用固件方案FSL-K91,具备20MHz的I/Q解调带宽,显示平均噪声位准-152dBm(每1Hz)以及不超过0.5dB的综合测量误差。可在信号频谱及调变方面依循IEEE802.11a/b/g/j无线网络标准,提供测量解决方案。 R&S表示,IEEE802.11/a/b/g/j无线网络标准已定义完毕且数据传输率达54Mbps,信号依循IEEE802.11a/b/g/j所定的正交性分频多任务法(OFDM)传输,然而,IEEE802.11b/g信号偶尔也会使用CCK或者是P
[新品]
整合高性能仪器和FPGA,实现最佳WLAN测量
概述 在下一代无线局域网白皮书中已经讨论了最新的802.11标准存在的一些问题。众所周知,测试工程师都想尽快找到测试该标准的测试设备。大多数测试工程师发现使用最佳性能的昂贵盒式仪器的传统方法已经无法适用于该情况。出现该问题的原因十分简单:测试工程师急需各种资源,主要包括时间、预算和空间。当前测试工程师已通过各种新技术来缩减预算并减小空间,以及加快测试和开发时间。NI提供的用户可编程FPGA仪器可帮助测试工程师解决这些问题。本文章主要讨论通过现场可编程门阵列(FPGA) 针对802.11ac进行测试的优势。 WLAN测量入门指南 NI PXIe-5644R是业界首台矢量信号收发仪(VST)。该VST的特点是高达80
[测试测量]
整合高性能仪器和FPGA,实现最佳<font color='red'>WLAN</font>测量
中国联通加快部署WLAN 是奋进还是无奈?
    继去年8月中国联通启动20万WLAN设备招标,并于去年年底在吉林长春与深圳两城市试点共享式WLAN之后,中国联通于近日又启动了新一轮WLAN设备集中采购招标工作。厂商已于4月18日前向中国联通提交了投标文件。     从中国联通近来在 WLAN 市场一系列动作来看,中国联通已经越来越感觉到了 WLAN 的重要性,规模部署的步伐势必加快。     中联通 WLAN 奋起直追     在移动互联网高速发展下, WLAN 无疑已经成为运营商的重要战略资源。在国内,尽管中国联通在 WLAN 部署方面远落后中国电信与中国移动,但其却表现出了强劲的持续力。     继去年 8 月中国联通启动 20
[网络通信]
安华高推出新高线性功率放大器模块产品
安华高推出新高线性功率放大器模块产品   Avago Technologies(安华高科技)今日宣布推出两款具有低功耗特性的新高线性功率放大器(PA, Power Amplifier)模块产品,可以改善2GHz频带范围WiMAX和WiFi应用的信号质量。这个功率放大器系列拥有高线性功率输出,可以带来良好的线性度和低失真、高附加功率效率(PAE, Power Added Efficiency)以及输入和输出预匹配,可以简化匹配和应用设计。Avago的MGA-43x28功率放大器模块采用微型化5x5x0.85mm封装,非常适合2,300到2,700MHz频带工作的各种高功率WiMAX、WLAN和LTE应用作为最后级功率放大
[模拟电子]
安华高推出新高线性<font color='red'>功率放大器</font>模块产品
相邻信道抑制/干扰对802.11 WLAN造成的影响
随着无线联网技术以及其他无线技术在无许可限制的同一频谱范围内的迅速推广应用,Wi-Fi(802.11)产品遭受的射频(RF)干扰与日俱增,从而严重影响无线局域网(WLAN)的数据吞吐性能。与此同时,对诸如多媒体音频与视频、流媒体、WLAN语音以及其他需要服务质量(QoS)功能与较低分组误差率的应用等新型WLAN应用,市场要求更高的数据吞吐速率。由于在环境中对WLAN设备的带内干扰与邻带干扰不断增加,因此射频与数字过滤的设计至关重要。本文分析了邻信道干扰(ACI)的来源以及射频设计实践,通过此实践可以改善WLAN的相邻信道抑制(ACR)而全面提高其性能。 概述 在2.4GHz与5.xGHx无许可限制的频带中,ACI问题以
[网络通信]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved