交流开关电源直供高压直流的路在何方?

最新更新时间:2014-11-29来源: 互联网关键字:交流开关电源  高压直流 手机看文章 扫描二维码
随时随地手机看文章

距IT设备240V高压直流供电标准的诞生已过三年。现如今,某些电信运营商和一些大型互联网公司,已经有数目可观的IT设备、IDC机房、核心网络和业务平台采用270V(标称值240V,默认值270V)高压直流供电。高压直流供电都有哪些好处呢?

节能!依据电信运营商的运行数据结果统计,用高压直流替代传统的交流UPS供电,在UPS整个生命周期内平均节能大于20%;从新建系统统计数据分析,高压直流系统替代传统的交流UPS系统,平均节约投资大于40%。可靠!由于高压直流系统结构比UPS系统简单,而且采用了电池直挂输出母线,在进一步提高系统可靠性的同时,还提供了一个很大的滤波池,给设备带来更为洁净的供电环境。简单!从“通信电源系统”和“电力操作电源系统”衍生出来的模块化高压直流系统,其运维没有UPS并机所要求的“相同的幅值、频率和相位”等需求,可直接并机扩容,维护操作方法得到简化,倍受各大运营商、互联网公司和设备制造商的高度关注。真实!从实际运行数据上看,设备可靠性大有提升,故障率减少了一半。

高压直流带来的具体好处:

1、设备负载率高,加上节能休眠管理,大大提高系统整体效率

2、拓扑简单,电池直接挂母排上,且电源模块N+1冗余,可靠性高

3、电源模块达到插拔式的便利程度,可在机柜内按需在线扩容

4、并机扩容无交流电源幅度、相位和频率的同步要求,机柜扩容简单

5、标准机柜设备,可以集中能源池布置,也分散到网络设备群中布置

6、现场更换故障电源模块简易,一线运维人员即可操作

但是,现有的服务器等IT设备多数采用交流220Vac供电,尚无IT设备厂商明确表态支持直流270Vdc输入,这势必会影响设备的维保服务。那么高压直流能否可直接应用于现有的服务器而不对服务器的可靠性产生影响呢?这是运营商和IDC运营企业关注的首要问题,也是制约高压直流应用的一大魔障。

为了分析这个问题,我们先来了解一下目前交流输入服务器等IT设备电源的基本工作原理。由于IT设备都承载重要的数据通信业务,因此通常都采用高标准的高频开关电源,其主要特点是效率高、体积小、功率因数高、谐波小。

交流服务器电源通常采用一个PFC电路将交流经过整流桥整流后的直流电压升压到400V左右的高压,再经DC/DC变换电路转换为12V、5V和3.3V的电压。(本文主要谈论220Vac和270Vdc供电的差异,这对电源的主要影响在PFC级之前,因此不再阐述DC/DC级之后的电路结构。)高频开关电源PFC级之前的电路结构如图1所示,其中,L1、L2和 C1、C2、C3为EMI滤波电感和电容,R是软启动电阻,用于防止服务器上电时输入有较大的冲击电流。软启动结束后,通过继电器将软启动电阻短路,减小损耗,D1~D4为整流桥,L3、S1和D5为PFC电路的电感,开关管和二极管,C4为母线电容,为后面的DC/DC电路提供所需要的直流电压。从下面的拓扑中可以看到,服务器采用交流还是直流供电,对服务器本身的影响都只集中在前级PFC电路上。

图1 高频开关电源电路结构

因此,如果想要用高压直流替代UPS作为服务器的供电电源,需要关注以下方面:

1、交流输入电压范围和直流输入范围,特别是直流输入下最低工作电压

2、启动电流比较:交流和直流输入下的启动电流波形

3、整流桥后的电压比较:220Vac下整流桥后电压,以及270Vdc下的整流桥后电压

4、流经整流桥二极管的电流比较:220Vac下的整流桥二极管电流,以及270Vdc下的整流二极管电流波形

5、软启动电阻的风险分析:分别在220Vac和270Vdc下的软启动电阻两端的波形

6、PFC二极管电压电流、PFC母线电压、母线电容的波形等

下面我们逐条分析。

2.1直流电压范围的确定

目前服务器为了兼容不同国家和地区的电网,输入范围可能在90~264Vac,因此,根据交流经过整流后的平均值来计算,其直流电压的输入范围可以为114~336Vdc。而通常高压直流的输出范围在210~290Vdc之间,正常电压为270Vdc,因此在服务器电源的欠压保护电压和过压保护电压的范围内,可以保证服务器的正常工作。

2.2整流桥的电压应力

从上面的图1可以看到,在交流电的正半周,输入电流流经整流桥的D2和D4,二极管D1和D3承受反向电压,反向电压的最大值即等于交流电压的峰值。如果按照交流额定电压220Vac计算,此时D1和D3上承受的反向电压最大值为;在交流电的负半周时,输入电流流过D1和D3,二极管D2和D4上承受最高311V的电压。而采用额定输出270Vdc的高压直流供电,那么整流桥上承受的反向电压即等于服务器输入的直流电压270V。

图2和图3是采用交流和直流供电时,整流桥D1上的反向电压和电感L3上的电流对比,从图中可以看到,在交流230Vac和直流280Vdc输入下,整流桥上二极管承受的反向电压分别为323V和288V,高压直流输入下整流管可靠性更高。

图2 通道3:Vin=220Vac  D1反向电压(100V/格)   

图3通道3:Vin=270Vdc  D1反向电压(100V/格)

2.3流经整流桥二极管的电流

交流输入的情况下,整流桥的每个二极管都只在半个周期内流过电流,在交流正半周时,电流流过二极管D2和D4;在交流负半周,电流流过D1和D3。假设采用一个通信电源的整流模块来模拟服务器,整流模块输出53.5V/50A,输入为220Vac时,假设模块的效率为。那么根据,可以计算出交流输入电流的有效值为

整流桥的峰值电流为

考虑40%的峰峰值纹波电流,那么流过整流桥的电流峰值为

整流桥上每个二极管的平均电流为

假设整流桥二极管的导通压降为1.1V,那么每个二极管的损耗为

整流桥的总损耗为

如果同样负载条件下采用270V的高压直流供电,那么电流只会流过D2、D4(或者D1、D3),其电流为11A,有效值比交流220Vac输入下要小。

同样考虑40%峰峰值纹波电流,直流输入时整流桥的电流峰值为13.2A,远小于交流输入情况。

由于在直流输入时,电流只流过半边整流桥,因此,二极管的电流的平均值等于输入电力平均值,假定二极管导通压降仍为1.1V(实际根据二极管伏安特性曲线,高压直流下电流减少压降也会减少,那么导通压降还要低于1.1V),整流桥的总损耗为

因此,对于270V直流输入而言,整流桥二极管的电流不管是有效值、平均值还是峰值都要比220Vac下要小,能够提高其可靠性。虽然直流下两二极管的损耗增加了,但是整个整流桥的损耗仍是减小的,由于四个二极管在同一个封装里共用同一个散热片,那么在相同的散热能力下,同样能够提高其工作可靠性。

图4是交流输入时二极管D2电流和D1的反向电压在峰值处展开后的波形;图5是直流输入时二极管D2电流和D1的反向电压在展开后的波形。从图中可以看到,Vin=220Vac时,整流桥二极管最大电流为23.1A,而在直流下为14.3A,考虑测量误差,该结果与理论分析基本吻合。

图4 通道2:Vin=220Vac  D2电流波形(10A/格)

图5通道3:Vin=270Vdc  D2电流波形(10A/格)

2.4 PFC二极管的电流

在PFC电路中,开关管S1关断时,电感电流L3流过二极管D5,因此,只需要测量电感的电流即可以计算出二极管D5的电流大小,根据图1,输入电流经过整流桥整流后即等于电感L3的电流,不同之处在于交流输入时,输入电流是一个正弦波,而电感电流的波形为馒头波,其数值大小是一样的。

因此,根据前面的计算电感L3电流峰值为

下图中(a)为交流220Vac输入时电感L3电流及二极管D5的反向电压波形,(b)为为电感电流在波峰处的展开波形,从图中可以看到,在S1开通时,电感电流上升,二极管D5截止,此时电感电流不流过D5,S1关断时,电感电流下降,此时二极管导通,电感电流流过D5。

此时,流过二极管的平均电流可根据下式计算得到,其中Duty()为PFC电路中开关管的交流输入不同瞬时值下的占空比

根据上式可以得到,在220Vac输入时,整流模块53.5V/50A输出时,二极管D5的平均值为7.234A。

(a)

(b)

图7 Vin=220Vac时,L3电流和D5反向电压波形

同理,在直流输入时,电感电流同样等于整流二极管的电流,根据前面整流二极管电流的计算,电感电流的最大值为13.2A,因此,二极管D5的峰值电流要比交流输入时小很多。图8是直流输入时候,电感L3电流和二极管D5反向电压波形。

图8 Vin=270Vdc时,L3电流和D5反向电压波形

同样可以计算直流270V输入时候二极管D5上平均电流,此时电感电流是一个直流量,开关管占空比是一个常数,计算结果为7.15A。

从上面的数据来看,交、直流输入时候PFC二极管D5的平均电流差异不大,而直流输入时D5的峰值电流较小。

2.5 母线电容电压和电流纹波

在交流输入时,由于需要经过整流二极管整流,整流过后的直流电压会存在100Hz的低频分量,虽然经过PFC电容升压,但并不能完全消除这个纹波,因此,母线电容电压必然存在100Hz的纹波,这会增大流过母线电容的纹波电流,从而影响母线电容寿命;而在直流输入时,电容上纹波电压和纹波电流则不存在100Hz的低频分量。下图是实测结果:

(a)交流220Vac输入

(b)直流270Vdc输入

图9交流和直流输入时母线电容电压和电流纹波 (电压20/格,电流10A/格)

从上图中可看到,交流输入时母线电容C4上的电压纹波47.6V,明显要大于直流输入情况下的17V,并且流经电容的纹波电流有效值为3.76A,比直流输入时的2.56A要大,这将会缩短电解电容的寿命。

2.6 软启动电阻电压

服务器在启动的时候,需要先通过软启动电阻给母线电容充电,当母线电压达到一定值后功率电路才开始正常工作。在交流输入的时候,交流电压通过不控整流后经软启动电阻给母线电容充电,充电时间较长,因此软启动电阻上的功率损耗会比较大,发热较严重;而直流充电时间很短,软启动电阻的功耗也会小很多,可靠性得到提升。图10给出了交直流输入条件下的启动过程波形,从图中可以很明显的看到在直流输入时,软起电阻上的电压(蓝色波形)持续时间很短,因此对软启动电阻的冲击要小很多,直流输入下可靠性更高。

(a)交流输入

(b)直流输入

1:软启动电阻R电压波形,2:输入电压,3:PFC电感L3电流波形,4:输出电压波形交流和直流输入时软启动过程波形

通过以上的分析,高压直流供电时,服务器电源PFC部分的功率器件的电压、电流应力、母线电容的纹波电压和电流都会小于交流供电的情况,而且软启动电阻的寿命以及和整流桥的可靠性都会变得更高,非但不会影响服务器的正常使用,还能够提高其可靠性能。而对DC/DC部分电路则和交流输入的情况是一致的。

结论:应用高压直流完全可以替代UPS给服务器供电。交流开关电源直供高压直流路在何方?想必诸位都已经看得很清楚了,前路漫漫,但光芒万丈!

关键字:交流开关电源  高压直流 编辑:探路者 引用地址:交流开关电源直供高压直流的路在何方?

上一篇:如何快速创建开关电源的PCB版图设计
下一篇:从构思到实践 如何完成开关电源的合理设计

推荐阅读最新更新时间:2023-10-12 22:49

低纹波高压直流电源主电路
低纹波高压直流电源 主电路含有两套完全相同的半桥逆变电路,逆变开关元件选用IGBT.每一路均采用独立的三相全控整流桥供电,逆变电路采用PWM 方式,工作频率远高于谐振频率, 逆变后的电压波形为方波。 电路的功率调节通过控制全控整流桥的移相角来实现。
[电源管理]
低纹波<font color='red'>高压</font><font color='red'>直流</font>电源主电路
高压直流输电技术的节能探索
夏季来临,电网又将进入负荷高峰期。为应对今年的夏季用电高峰,各级供电企业采取不同措施保供电。在输变电领域,应用节能技术和节能设备是电网节能措施中永恒的主题,也是解决电力大客户用电紧张问题的有效措施。 自上世纪80年代以来,电力传输技术的发展步伐明显加快,提高传输能力的办法不断涌现,既有直流输电技术、柔性交流输电技术、分频输电技术等高新技术,同时也有对现有高压交流输电线路的增容改造技术,如升压改造、复导增容改造、交流输电线路改为直流输电技术等。直流输电,对于提高现有传输系统的传输能力,挖掘现有设备潜力,具有十分重要的现实意义,实施起来可收到事半功倍的效果。 经济性三大特性突出节能效果 从经济方面看,直流输电有以下三
[电源管理]
高压直流接触器 续流能力高达 200A
2017年6月22日 TDK集团推出新的HVC200A双极型高压直流接触器,可用于开断高直流电压和直流电流,其工作电压最高可达450 V DC,续流可高达200 A。断开直流负载所产生的电弧可在密闭的开关 室内部通过灭 弧气体 实现快速安全 的中断 。其中 HVC200A 系列高压 直流 接触 器有 B88269X1000C* 和B88269X1010C* 两种型号,尺寸为89 mm x 44 mm x 93.5 mm(长x宽x 高),分别适用于12 V或24 V的驱动器版本。两种型号在额定电压下的功耗均为6W。此外, 新型接触器还配备了用于检测开关状态的电路选项。 该具备高续流能力的高压直流接触器广泛用于电动车等领域,能快速
[新品]
开关电源原理与设计(连载37)交流输出单电容半桥式变压器开关电源(part2)
      另外,单电容半桥式变压器开关电源属于正激励输出电源。正激式电源的变压器伏秒容量一般都取得很大,励磁电流相对于等效负载电流来说非常小,即:在图1-40-b中i2远远大于i1。由此,我们主要是对i2电流的作用进行分析,而对i1只把它看成是对i2进行调制,并且调制幅度很小。       如果不考虑i1对i2的调制作用,则当控制开关K1接通,电源电压Ui开始通过控制开关K1和开关变压器初级线圈的等效负载电阻R对电容C1进行充电,电容器两端的电压增量为:       (1-164)和(1-165)式中,Δuc 电容器充电时电容器两端的电压增量,Δ uc2为电源单独通过等效负载电阻R对电容器充电时,电容器两端的电压增
[电源管理]
<font color='red'>开关电源</font>原理与设计(连载37)<font color='red'>交流</font>输出单电容半桥式变压器<font color='red'>开关电源</font>(part2)
直流高压在小密铅酸蓄电池池壳检测中的应用
       1﹑引言   随着铅酸蓄电池质量的不断提高,其应用范围越来越广泛。要生产一只合格的铅酸蓄电池,必须经过多道生产工艺,而且每道生产工艺都有严格的工艺要求。目前大部分蓄电池壳生产厂家在蓄电池池壳注塑后仅凭人工检测注塑效果,以剔除不合格品。而在池壳注塑过程中受温度及材质等因素的影响,池壳可能出现气孔、毛毗等缺陷,由于小密铅酸蓄电池的池壳各单格相互连结的隔板比中、大密电池薄,小密蓄电池各单格之间的间距也较小,所以仅凭人工检测很难发现池壳的某些缺陷,等到半成品电池时再通过检测仪器剔除因此造成的不合格品就为时过晚,已经浪费了大量的人力、物力。针对这种情况,我们参考国外相关成品电池密合度检测设备中的高压检测原理,成功开发
[电源管理]
<font color='red'>直流</font><font color='red'>高压</font>在小密铅酸蓄电池池壳检测中的应用
兆瓦级加速器直流高压电源
        1  引言         随着人们对环保技术的探索,加速器也逐渐被应用于环保产业中,电子束法电厂烟气脱硫脱硝就 是一例。该类加速器的电源功率要求达到  1000kW,而对电压要求的等级不是很高,1MV  左右即可。 由于该类加速器能耗较大,因此,人们对其进行设计时更多的关注能量的转换效率。三相变压器型的 直流电压发生器可以达到 90%以上的能量转化效率,较好的满足了市场的需求。同样可以达到这一要 求的是绝缘芯变压器型电源,但是该类电源的结构复杂,一旦设备发生击穿后维修困难。普通的三相 变压器型电源结构更简单,维护更加方便。         下表给出了目前使用较多的工业加速器用直流高压电源的性能比较  
[电源管理]
兆瓦级加速器<font color='red'>直流</font><font color='red'>高压</font>电源
浅谈机房的高压直流供电应用
 摘要:随着计算机网络的普及和数据业务的快速发展,机房供电也朝着大容量、高可靠的方向发展。     一、机房供电的趋势及存在问题        机房的供电问题,关系到网络的安全等级和成本,历来成为业界关注的重点。随着计算机网络的普及和数据业务的快速发展,机房供电也朝着大容量、高可靠的方向发展。但是随着机房规模的扩大,机房的耗电问题、扩容问题和维护问题日益突出。现在各行业的数据机房一般采用交流UPS电源系统供电,但交流UPS电源系统却有着明显的缺陷:        1、效率低。对于供电级别要求高的机房,交流UPS设备一般采用1+1备份方式。为了保持系统的冗余,每台UPS的实际负载只能控制在35%以下,在电源资源的使用上有着较大的浪费
[电源管理]
浅谈机房的<font color='red'>高压</font><font color='red'>直流</font>供电应用
甘肃、山东签署陇东至山东±800千伏特高压直流工程战略合作框架协议
从国家电网甘肃省电力公司获悉,甘肃和山东两省政府合力陇东至山东±800千伏特高压直流工程建设,双方于日前签署战略合作框架协议。双方将本着优势互补、互利共赢、共同发展的原则,抢抓国家深入推进西部大开发的有利时机,加强两省能源战略合作,联合推进陇东—山东特高压直流工程规划建设。并在涉及电力市场空间、清洁电力占比、配套电源开发、工作机制等多方面达成一致意见,为陇东至山东±800千伏特高压直流工程加快可研、设计、立项等后续工作有效推进提供坚强保障。 陇东至山东±800千伏特高压直流工程是甘肃省继800千伏祁韶特高压直流输变电直流工程之后建设的又一条能源外送大通道。2017年投运的800千伏祁韶特高压直流工程将甘肃河西风电、
[新能源]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved