基于KAI-01050 CCD功率电路的驱动方案

最新更新时间:2014-12-06来源: 互联网关键字:KAI-01050  CCD  功率电路 手机看文章 扫描二维码
随时随地手机看文章

  本方案对部分重点电路进行了仿真验证,并通过测试验证了本方案所设计的驱动电路各部分功率驱动电路满足KAI-01050 CCD的功率驱动要求,在四通道输出模式下,帧频可达120 f/s,充分验证了该方案的合理性。

  此CCD功率驱动电路的难点包括40 MHz高速水平转移和复位时钟驱动、三电平阶梯波形垂直转移时钟V1和高压脉冲电子快门信号驱动设计。利用高速时钟驱动器ISL55110和钳位电路实现了高速水平转移时钟的驱动;利用两个高速MOSFET驱动器组合的方案,实现了三电平阶梯波形垂直转移时钟V1的驱动;利用两个互补高速三极管轮流开关工作实现了高压脉冲电子快门信号的驱动。

  电荷耦合器件(CCD)是一种光电转换式图像传感器,它将光信号直接转换成电信号。由于CCD具有集成度高、低功耗、低噪声、测量精度高、寿命长等诸多优点,因此,在精密测量、非接触无损检测、文件扫描与航空遥感等领域中得到了广泛的应用。CCD的功率驱动是CCD应用的关键技术之一,只有驱动脉冲的相位和电压幅值满足CCD的要求,CCD才能正常的完成光电转换功能,输出满足应用需求的信号。时序极为严格的多路驱动信号是CCD正常工作的条件,由于CCD是容性负载,因此设计具有一定带负载能力驱动信号成了CCD相机系统设计中的重点和难点。

  KAI-01050是KODAK公司生产的一款高速面阵行间转移CCD,其驱动电路不仅有高达40 MHz的高速水平转移信号,还有三电平阶梯的垂直转移信号和高压脉冲的电子快门信号。这些都属于本文论述的功率驱动电路设计的重点和难点。

  本文围绕CCD KAI-01050进行功率驱动电路设计,对各部分的设计进行原理分析,并对其中部分电路进行仿真验证,最后通过试验验证设计的可行性。

  1 KAI-01050面阵CCD

  KAI-01050是KODAK公司生产的一款高速面阵行间转移CCD,1 024(V)×1 024(H)像素,像元大小为5.5μm×5.5μm,其模拟输出可选择单通道、双通道和四通道输出模式。其水平转移时钟最高频率为40 MHz,此时,单通道输出帧频最高可达30 f/s,双通道输出帧频最高可达60 f/s,四通道输出帧频最高可达120 f/s.

  本文的论述的相机要求相机输出帧频为120 f/s,因此要求CCD工作在最高水平转移时钟率40 MHz.本CCD的驱动信号电压幅值要求和等效电容值如表1所示。

  

 

  由表1可知,KAI-01050的驱动信号种类比较多,主要包括行转移(垂直转移)时钟、像素读出(水平转移)时钟、复位时钟和电子快门信号。其功率驱动电路设计重点和难点如下:

  (1)垂直转移时钟V1为三电平阶梯信号;

  (2)水平转移和复位时钟为40 MHz高速信号;

  (3)电子快门信号为的峰值达29~40 V的高压脉冲信号。

  2功率驱动电路设计

  CCD驱动电路原理框图如图1所示。

  

 

  图1 CCD驱动电路原理框图

  FPGA产生垂直转移时钟、水平转移时钟、复位时钟和电子快门信号。由于FPGA产生的是3.3 V幅度的信号,需要经过功率驱动电路,转换成符合CCD要求的驱动脉冲信号,进而驱动CCD正常工作。本文重点论述其中的功率驱动电路部分。

  2.1电压偏置模块

  功率驱动电路所需电压如表1所示,根据电压需求设计的电压偏置电路原理框图如图2所示。

  

 

  图2 电压偏置电路原理框图

  系统采用+12 V电源供电,电压偏置电路首先使用开关电源芯片(DC/DC)进行一级电压转换。又由于DC/DC输出电压的纹波和开关噪声较大,不能直接给电路供电,所以使用LDO芯片进行二次电压变换,最终获得稳定、低噪声的电压。

  2.2水平转移和复位驱动电路

  由以上可知,欲使CCD工作在最高帧频120 f/s,水平转移和复位时钟的频率需要工作在40 MHz.每个驱动信号功率需求如式(1)所示:

  

 

  式中:C为CCD时钟管脚的等效电容;V为信号的摆幅;f为工作频率。由式(1)可知,频率越高,需要的功率越大。

  时钟信号不仅对高低电平电压有要求,上升沿和下降沿时间也必须要在指定的范围内。要得到指定的上升时间,就必须提供相应大小的驱动电流。对CCD功率驱动电路的要求是在较大电压摆幅情况下在快速的变化沿时能够提供足够大的瞬态驱动电流。

  

 

  由于CCD为容性负载,由下面电容模型的公式可以算出驱动器需要提供的瞬态电流。

  上面的计算中定义上升或下降沿的时间对应电平幅度的10%~90%.设边沿变化为线性的,对于水平转移时钟,电压幅度为4 V,负载电容取最大值90 pF,对于40 MHz信号,上升或下降沿的最长时间按5 ns计算,那么在边沿变化处会产生的电流为57.6 mA;对于复位时钟,电压幅度为5 V,负载电容取最大值16 pF,对于40 MHz复位信号,占空比取1∶4,上升或下降沿的时间按3 ns计算,那么在边沿变化处会产生的电流为21.3 mA.

  本文选用InterSIL公司高速驱动器ISL55110和二极管钳位电路进行复位和水平转移时钟的驱动电路。此驱动器最高可提供3.5 A的驱动电流,在100 pF的负载电容下,电压摆幅为12 V时,上升时间仅为1.4 ns,下降时间仅为1.2 ns.完全满足水平转移和复位时钟的功率驱动要求。

  2.3垂直转移驱动电路

  垂直转移信号分为两种:

  (1)正常的两电平阶梯波形的V2T,V2B,V3T,V3B,V4T和V4B,高电平为GND,低电平为-9 V;

  (2)三电平阶梯波形的V1T和V1B,高电平为12 V,中间电平为GND,低电平为-9 V.

  第一种驱动比较简单,利用驱动器和钳位电路的组合就可实现,本文不在赘述。本节主要介绍第二种电路的驱动。介绍了利用驱动器组合来实现三电平阶梯波形驱动,即把三电平阶梯脉冲分为上下两个信号,分别利用两个驱动器进行驱动,利用其中一个驱动器的输出控制另一个驱动的高电平电源管脚,从而实现三电平阶梯脉冲的驱动。

  本文也选用驱动器组合的方法来实现,由表1可知,KAI-01050 CCD的三电阶梯脉冲驱动的高低电平的差为21 V,如果选用普通的CCD驱动器,很难产生21 V这么大压差的驱动。

  本文选用IXYS公司生产的高速MOSFET驱动器IXDD404,它是一款双通道超快MOSFET驱动器,每通道最高可以输出峰值为4 A的电流,高容性负载驱动能力,低传输延时时间,在负载为1 800 pF时,上升/下降时间小于15 ns,4.5~35 V的宽电压操作范围。这些特点满足KAI-01050三电平阶梯脉冲驱动电路对驱动器的需求。其原理图如图3所示。

  将三电平信号V1分解为V1HM和V1ML信号,分别经过2个IXDD404驱动器U1和U2进行驱动。V1ML经U1驱动后的信号控制U2的电源输入管脚,从而两个驱动器的组合产生所需的三电平阶梯波形信号。注意U2的GND脚,接了-9 V,此处只是为U2提供0电平基准,并不是必须接GND.U2前端二极管钳位电路是将逻辑电平输入调整为U2的输入范围。

 

  图3 三电平阶梯脉冲功率驱动原理图

  2.4电子快门驱动电路

  KAI-01050 CCD为防止强光溢出提供一种结构可实现溢出保护和曝光时间可调节。溢出保护功能通过加在器件衬底的直流电压来实现,若足够大的电压脉冲(峰值为29~40 V)加到衬底,所有光电二极管内电荷被抽空,随后开始光积分阶段,实现电子快门功能。

  KAI-01050的电子快门电压要求如图4所示,要求加到衬底上的直流电压为VSUB,VSUB的典型值为VAB,每个CCD芯片VAB可能不同,标注在CCD的包装上,为5~15 V之间的值,在电子快门期间衬底上的电压瞬间变为VES(电压值为29~40 V),电压脉冲的最小宽度为1μs.如果采用通常的CCD驱动电路,很难实现这样高电压、窄脉冲信号,为此设计采用两个互补高速三极管轮流开关工作来实现高压脉冲电子快门信号的驱动。原理如图5所示电路,此电路中暂设VAB为8 V.

  

 

  图4 KAI-01050

  首先时序发生单元的时序信号经过电容C1和C2耦合到两个电阻钳位端,两个电阻R1和R2用于把电容耦合过来的信号钳位到固定的电平。这样产生的两个信号就用于控制两个开关三极管的导通与截止。两个互补的三极管的集电极接在一起作为开关输出。当加在Q2基极的控制信号向上摆动时,三极管Q2就会导通,而这时加在Q1基极的信号恰处在高电平期间,因而三极管Q1截止,所以输出到负载C3的信号为低电平。同理,当加在Q2基极的控制信号为低电平时,三极管Q2截止,而这时加在Q1基极的信号恰以高电平向下摆动,因而三极管Q1导通,所以输出到负载C3的信号为高电平。

  因此,这两个三极管组成的电路为反相驱动电路。驱动电路输出经电容C3耦合到D1的钳位电路,D1的作用是将输出信号的低电平钳位到VSUB(本电路中取值为8 V)。经钳位电路后产生最后的电子快门信号。

  

 

  图5 电子快门功率驱动电路

  利用Cadence软件集成PSpICe工具对图5所示的电路进行仿真,仿真的输入波形高脉冲宽度选择为电子快门要求的最小宽度1μs.为看到仿真波形的细节,输入波形的周期(为电子快门的周期,在实际使用中为可调周期)选择较短的20μs.钳位电压VSUB取值为8 V,可以取5~15 V之间的任何值,实际中以CCD器件包装上标注的VAB值为准。CCD电子快门输入管脚的等效负载电容为400 pF,为验证此电路驱动能力是否满足要求,此电路中加如了容值为400 pF的C4模拟CCD的等效电容负载。仿真结果如图6所示。

  

 

  图6 电子快门功率驱动电路仿真波形

  图中下方曲线为输入波形,上方曲线为输出波形。

  由输出波形可知,高脉冲宽度与输入一致,未出现失真,低电平为8 V,高电平为34 V,满足29 V≤VES≤40 V的要求。

  3实验测试

  根据以上原理,设计了KAI-01050的驱动电路,并进行了测试。图7为水平转移时钟的测试波形图,驱动信号频率为40 MHz,幅值-4~0 V,上升沿与下降沿时间仅为1.8 ns左右,符合CCD驱动时序要求。

  

 

  图7 水平转移时钟的测试波形图

  

 

  图8 三电平转移时钟和电子快门信号波形

  图8为三电平垂直转移时钟和电子快门是驱动信号波形,图中上面是三电平转移时钟信号,低电平为-9 V,中间电平0 V,高电平12 V;下面波形为电子快门信号,常态电平为6.9 V左右,在计数器计数到需要曝光的时序位置时,输出一个脉冲宽度不小于1μs的29~40 V脉冲(相机设计值为32 V)。这两个信号其上升沿下降沿时间都很陡峭,满足驱动时序的要求。

  4结语

  本文首先介绍了KAI-01050 CCD驱动信号的特点,分析了其功率驱动电路的设计难点,基于本方案设计的重点和难点进行了各种CCD信号功率驱动电路的设计,并对部分电路进行仿真,验证了设计的合理性。

关键字:KAI-01050  CCD  功率电路 编辑:探路者 引用地址:基于KAI-01050 CCD功率电路的驱动方案

上一篇:如何使用同步整流器提高非连续反激效率?
下一篇:一种紧缩结构的基片集成波导双通带滤波器

推荐阅读最新更新时间:2023-10-12 22:50

功率LED恒流驱动电路的设计分析与实例
虽然大功率LED现在还不能大规模取代传统的照明灯具,但它们在室内外装饰、特种照明方面有着越来越广泛的应用,因此掌握大功率LED恒流驱动器的设计技术,对于开拓大功率LED的新应用至关重要。LED按照功率和发光亮度可以划分为大功率LED、高亮度LED及普通LED。一般来说,大功率LED的功率至少在1W以上,目前比较常见的有1W、3W、5W、8W和10W。已大批量应用的有1W和3W LED,而5W、8W和10W LED的应用相对较少。预计大功率LED灯会在2010年上海世博会上大量应用,因此电子和照明行业都非常关注LED照明新技术的发展应用。 中国照明网技术论文·LED照明 恒流驱动和提高LED的光学效率是LED 应用设计的两个关
[电源管理]
大<font color='red'>功率</font>LED恒流驱动<font color='red'>电路</font>的设计分析与实例
基于LA4440的立体声功率放大器电路
立体声放大器是指具有两个输出和输入通道的放大器类型。馈入两个通道的微弱输入信号将被放大,输出通道中的功率将得到提升。该电路能够为扬声器提供 6 瓦的功率。 LA4440 该电路使用内置立体声输入和输出通道的立体声芯片IC LA4440。LA4440 的工作电压范围为 12V 至 18V。除此之外,该芯片还可以在立体声模式下工作时为每个输出通道提供 6W 的功率。该放大器可以为输入信号提供约53.5dB的增益。 立体声功率放大器的工作原理 IN1 和 IN2 引脚是两个输入立体声通道,微弱的音频信号将通过它们馈送。电容 C10 和 C1 去除信号中的直流元件。电阻R3和R4将用作音量控制。引脚 2 和 6 连接到芯片 LA4
[嵌入式]
基于LA4440的立体声<font color='red'>功率</font>放大器<font color='red'>电路</font>
声频功率放大器的音源选择电路
   0 引言   现代声频功率放大器,一般都接有多种音源,如VCD、CD、DVD、卡座、收音头等。对它们进行选择和切换,是选择电路的主要任务。目前市场上流行的音源选择电路丰要有:轻触式电子丌关选择电路、继电器丌关式选择电路、机械开关式选择电路,下面分别对它们进行介绍。    1 轻触式电子开关式音源选择电路   轻触式电子开关音源选择电路的主要优点是:手感好、在面板上的布置美观、布线方便、信号通路无触点、寿命长、成本低。是目前市场上主流音源选择方法。主要缺点是:线路相对复杂,电指标略低于继电器音源选择电路,由于部份集成电路供电电压不高,致使过载源电势较低。    1.1 用CD4052构成的音源选择电路
[模拟电子]
150W汽车音响功率放大器电路设计
这是150W汽车音响功放的电路设计。该电路分为两个框图:音调控制电路和功率放大器电路。 150W 汽车音响放大器的音调控制 基于IC LF353构建的音调控制电路在立体声模式下,我们将有八个扬声器的作用,它们将产生非常重要的声压。 音调控制方案 音调控制 PCB 设计 150W汽车功放 该功率放大器基于每个通道的单个 LA47536 电源 IC 构建。对于立体声通道,每个模块需要两个类似的电路(音调控制和功率放大器) LA47536 是一款专为汽车音响系统而开发的 4 通道 BTL 功率放大器 IC。 输出级特点 纯互补结构,在高端使用 V-PNP 晶体管,在低端使用 NPN 晶体管,以提供高功率和卓越的音频质量。
[嵌入式]
150W汽车音响<font color='red'>功率</font>放大器<font color='red'>电路</font>设计
基于单片机的线阵CCD实时检测系统的开发
摘要:分析了线阵CCD用于实时检测系统的特点和要求,介绍了一种基于AT89C2051单片机的线阵CCD实时检测系统的设计方案。本方案电路结构简单可靠,信号处理灵活检当,有一定的通用性和启发性。 关键词:CCD 单片机 驱动 检测系统 CCD(Charge Coupled Devices)电荷耦合器件应用系统的关键技术在于CCD驱动时序的产生和输出信号的采集与处理。目前驱动主要有直接数字电路驱动、EPROM驱动、专用IC驱动、复杂的CPLD驱动等常用的驱动方法,但是它们存在着逻辑设计较为复杂、调试困难、柔性较差等缺点。在数据采集和处理方面,大多数都经过差动放大、采样保持、A/D转换,再通过总线或采集卡等接口与PC机相连。这种系
[单片机]
Teledyne e2v将继续精进高规格CCD成像传感器的研发
Teledyne Imaging集团旗下的Teledyne e2v表示,它将继续作为长期合作伙伴,为高端科学市场开发、制造和供应CCD探测器,用于太空探索、地球观测和显微镜、光谱学及天文学领域的地面科学工作。 Teledyne e2v 作为欧洲航天局(ESA)、美国国家航空航天局(NASA)、欧洲南方天文台(ESO)和日本宇宙航空研究开发机构(JAXA)的长期供应商,为了确保能在检测器和系统必须正常运行的环境中交付科学级可见光检测,其必需做出极大努力。 Teledyne e2v的太空与量子部门总裁Miles Adcock评论说:“50多年前发明的CCD不仅带来每年数十亿美元的成像产业,还使人们能够探索遥远的世界,以
[传感器]
Teledyne e2v将继续精进高规格<font color='red'>CCD</font>成像传感器的研发
400W大功率稳压逆变器电路浅析
利用TL494组成的400W大功率稳压逆变器电路。它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。TL494在该逆变器中的应用方法如下: 第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为5V,3
[电源管理]
400W大<font color='red'>功率</font>稳压逆变器<font color='red'>电路</font>浅析
超远透雾夜视摄像机 打造视频监控千里眼
      近年来,采用视频监控设备保卫安全已经成为了各行各业的必要手段。但是传统的视频监控设备无一例外的都有一个弊端,就是在夜间和雾天的监控效果十分不理想,而夜间和雾天又是案件多发时间。另外,对于距离稍远的监控,几乎更是一片空白。   虽然近几年微光夜视技术也得到了长足的发展,但成本和应用的平衡总是难于取舍。为了改善监控效果,并降低成本,北京中盛安泰科技有限公司首家推出了一款价透雾、远距离的一体化摄像机,并且可以定制从1公里到300公里不等的监控距离。   这款超远透雾夜视一体化摄像机的核心是多波段摄像机和高灵敏度的600线微光CCD。此种CCD可根据环境自动在微光和近红外两种模式间切换。CCD的近红外波段透雾特点还采用
[安防电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved