采用独立的LDO来驱动每个电源输入的方法为整个设计提供了最佳隔离,并且在多数情况下,可实现最佳噪声性能。 但是,由于LDO输出端的噪声远小于ADC噪声,因此它并不是影响整体噪声的主要因素。
然而,在驱动低输入电源电压时,也可能需要多个LDO,那时便会存在一些不足之处。这时就需要另一种方法,便是使用单个LDO将多个电源输入扇出至ADC。 该方法如下图所示。
采用单个LDO驱动多个ADC电源输入
本例所示为相反的极端情形,采用单个LDO为大部分ADC电源输入提供输入源。当然这种方法也有一些优点和缺点。 从图中可以看出,这是一个相当简单的方法,所需元件极少。 LDO数目减少也降低了系统总成本。
首先,由于只需购买一个LDO,而不是三个LDO(模拟、数字和驱动器电源),因此成本有所下降。 其次,LDO越少,意味着LDO所需的SMD元件(电阻、电容等)也越少。 虽然这会产生与新的铁氧体磁珠元件相关的成本,但该成本远低于LDO的成本。 目前,在Digi-Key网站上,ADP1741的1.5k订量报价为1.53美元。 相比之下,典型铁氧体磁珠在Digi-Key网站上的千片订量报价仅约为0.029美元。 这还不包括因所用电路板空间更小而带来的节省。
这是目前最佳的解决方案吗?
从性能方面来说,这未必是最佳解决方案。 选择铁氧体磁珠时需要全面考虑,既要提供充分的隔离,又不能具有较大的直流电阻(DCR)。 如果需要较小的电源电压(1.2V)和较高的输入电流(500-1000 mA),铁氧体磁珠上的压降可能会导致性能问题。 例如,对于需要750 mA电流的1.2V电源,当铁氧体磁珠的DCR为150 mΩ时,则其上产生的压降为150 mΩ × 750 mA = 112.5 mV。 这几乎是电源电压的10%。 此外,一个LDO可能无法提供足够的电流或处理足够的功率,来驱动所有这些电源输入。
若使用多个不同的LDO驱动不同的ADC电源,可以计算出了典型14位ADC的AVDD电源上ADP1741的功耗,功耗为1 W。 在该例中,ADC的总功耗为2 W。在同一个例子中,如果使用2 W的总功耗(因为现在使用的是单个LDO),结果就不会那么好。 这时,ADP1741的功耗约为(6 V – 1.8 V)*1110 mA = 4.662 W。这会造成ADP1741的最高结温(Tj)升高到TA + Pd x Θja = 85°C + (4.662 W x 42°C/W) = 281°C,比LDO的最大额定温度高出了100度以上。
正如您所看到的,成本、功耗和性能之间需要实现平衡。 这是不是很眼熟? 我想大家在大部分设计中都需要面对这种权衡取舍。
关键字:稳压器 ADC 电源接口
编辑:探路者 引用地址:单个低压差(LDO)稳压器与ADC电源接口
推荐阅读最新更新时间:2023-10-12 22:52
电源技巧:电流模式控制简化了对降压LED稳压器的补偿
通过较高的输入电压来调节LED中的电流,最有效的方法是使用一个同步降压稳压器。这可以通过一个集成场效应晶体管 (FET),峰值电流模式控制器轻松实现。在峰值电流模式控制中,COMP电压(经常被称作误差信号),直接控制峰值电感器电流。这使得电感器表现为一个电流源,其原因是他的阻抗变化对于电流幅值的影响很小。使用一个诸如TPS54218的峰值电流模式控制器的主要优势是这种器件几乎消除了由控制环路增益造成的电感器频率响应。
下面的方框图详细展示了一个同步降压转换器,其中的LED和感测电阻器与电感器串联。在这个应用中,电感器的全纹波电流流经LED。如果需要较少的纹波电流,只需增加电感值或将一个电容器与LED并联即可。无论输出电容器存
[嵌入式]
减少电源起动时发生故障的并联稳压器
TL431是很多厂家供应的一种 常用三端并联稳压器,在其应用中为设计师提供了多方面的功能。图1a是TL431的内部电路,包括一个精密电压基准、一个运算放大器,以及一个并联晶体管(参考文献1)。在典型的稳压器应用中,用两只外接电阻器RA和RB确定负载电阻器RS 低端的并联稳压输出电压(图1b)。按图中方式,TL431 和少许外接有源、无源元件可以搭成一个 SMPS(开关电源)PWM(脉宽调制)控制器的低功耗辅助电源。在某些电源设计中,降压变压器上的辅助绕组为 PWM 控制器提供功率。在输出轻载情况下,辅助绕组为 PWM 控制器提供的功率可能不足。例如,图 2 中变换器电路从一个辅助偏置绕组 WAUX 为 PWM 控制器提供能量,WAU
[电源管理]
DC/DC稳压器大功率LED恒流驱动设计
当前全球能源紧缺日益加剧,制约着经济的发展,节能成为人类面临的重要课题。在照明领域,被称为第4 代照明光源或绿色光源的LED照明产品以节能、环保、寿命长、体积小、坚固耐用等特点吸引着世人的目光。
由于LED 的伏安特性呈现非线性且伏安特性具有负温度系数的特点,以及生产工艺和生产水平的差异,不同生产厂家生产的同样功率等级的大功率LED 伏安特性存在差异,即使是同一厂家生产的同一批次的LED,个体间的正向压降也存在一定差异等原因,为了减少LED 的光衰,延长LED 的使用寿命,LED 的驱动电源采用低压直流恒流电源。目前,安森美、TI 等世界知名半导体器件公司均推出了适合LED 驱动的DC/DC 专用恒流控制集成电路,
[电源管理]
msp430fr2311单片机adc序列通道采样详细说明
使用P1.2、P1.3、P1.4、P1.5为采样通道,以demo的msp430fr231x_adc10_10.c文件为例。 1、将上述4个管脚配置为ADC模式: P1SEL0 |= BIT2 + BIT3 + BIT4 + BIT5; P1SEL1 |= BIT2 + BIT3 + BIT4 + BIT5; 2、查看资料可知,有4种adc采样模式,单通道单次,序列通道单次,单通道多次,序列通道多次; 本例选择序列通道单次,将ADCCT寄存器设为L1ADCCONSEQ_1;430读取通道数据时是由最高通道开始,直至A0,因此将ADCMCTL0设置为ADCINCH_5(通道5), ADCMCTL0 |= ADC
[单片机]
adc 采样 通道
今天学习stm32的adc部分,adc1有18个通道,其中adc16和adc17是内部通道,分别接内部温度计和Vrefint。在做A/D转换的时候,16个多路通道可以分为两组:规则组和注入组。不知道大家怎么看,也许是我看的不够专注,反正我觉得stm32的参考手册真是晦涩难懂,就像躲猫猫一样。就规则组这个地方,看了好长时间才算看明白。 总结一下规则组的设置。规则组由16个转换组成,注意这里说的是转换,而不是指16个通道。具体来说就是在ADC_SQR1-----ADC_SQR3这三个寄存器中SQ1 至SQ16 ,而每一个转换可以是ADC的前16个通道中的任意一个通道,所以这几个都是用5位一组表示的。通过对任意一个转换设置相应的数据
[单片机]
TI推出采样率200 MSPS 的16 位模数转换器
日前,德州仪器 (TI) 宣布推出采样率 200 MSPS 的业界首款 16 位单通道模数转换器 (ADC) ,从而可实现此前只有低分辨率 ADC 才能实现的超快速度。该款全新数据转换器可为通信、测试与测量以及国防等应用带来更高的性能水平,而评估板 (EVM) 则不仅可显著简化设计流程,还可实现这些复杂系统的快速评估 。
Databeans 公司首席分析师 Susie Inouye 指出: “ 医疗、无线通信以及宽带基础设施都需要更高的速度与分辨率,这推动了高速转换器的发展。事实上,从 2008 年到 2013 年,采样率为 50 MSPS
[模拟电子]
让5G更精确的发展,Teledyne e2v四通道ADC问市
摘要 无线技术在过去的20年里快速从3G发展到4G,现在已到了5G的时代。有一个技术问题一直贯穿这一发展的过程,即高频器件的自动校准测试。 RF ATE和现场测试系统面临的最困难的挑战是校准、可重复性和测试结果的关联度。未来的无线技术的发展需要5G NR器件。Teledyne e2v的四通道多输入端口ADC利用非并行片上高频交叉点开关输入电路技术,使用户可在RF ATE和/或现场测试环境中使用自动校准和测量技术。 Teledyne e2v的EV12AQ605和EV10AQ190(采用交叉点开关输入电路技术的12位和10位四通道ADC)使RF ATE和现场测试设备的开发可以集中于单通道和多端口5G NR设备的自动校准测试
[测试测量]
汽车ADC如何帮助设计人员在ADAS中实现功能安全?
尽管当今的车辆在多种驾驶场景中实现了自动化,但背后真正推动汽车从部分自动驾驶实现全自动驾驶的不是汽车制造商,而是移动服务提供商,例如出租车公司、汽车租赁公司、送货服务公司以及需要提供安全、高效、方便且经济实用的公共和私人交通工具的城市。 在完全自主的自动驾驶汽车驶上公共道路之前,它必须经历六个不同的自动化等级,即从0级(无自动化)到5级(完全自动化),如图1所示。自动化等级每提升一级,都需要对高级驾驶辅助系统 (ADAS) 技术进行大幅改进,并实现对所有安全关键型功能的适当管理。 图 1:自动驾驶等级 自动驾驶汽车使用多项传感器技术,包括摄像头、雷达和激光雷达。根据不同的环境条件和距离,这些传感器各有优缺点。传感器
[嵌入式]