(a)
(b)
图1 成品
此款UPS不间断电源的设计要求是,输入12V/20AH的铅酸电池,输出一组220V/50Hz/50W和一组110V/50Hz/50W。带有短路、过流、过放电保护,根据是否有市电接入,220V输出可以在逆变和市电之间切换。 整机的主体结构是SG3525准闭环推挽升压+EG8010全桥逆变+EG4318充电控制,使用了一颗带8位AD的MCU作电量指示、过放电自动关机控制、单键轻触开关机控制以及市电/逆变切换,同时在电池侧使用了高边电流检测方式,电池测电流超过15A时自动关机。
(a)
(b)
图2 电路板
整版的结构比较紧凑,因此使用了常用的字母板结构,由于输出功率很小,选用廉价的IR2106作为高低边驱动。推挽部分使用EI33变压器,瞬间功率可以超过200W,但实际功率受到推挽部分散热限制,因此通过高边电流检测限制在120W左右确保可靠性。两路spwm滤波电感均采用廉价的EE25铁氧体磁芯气隙电感。
下面重点讲解众多初学者的迷惑,在设计制造UPS不间断电源时的一些常见问题。 推挽部分该用什么磁芯?
首先我们要搞清楚,推挽属于正激类,我们要做的是一个真正意义的变压器,而不是反激里面的电感,所以应该用高磁导率的磁芯以增大初级电感,降低励磁电流。所以磁芯材料一般用铁氧体,至于结构,可以用能够想象的任何结构,包括磁环。
已知了输出功率,应该用多大的磁芯?
这个问题我感觉确实很复杂。磁芯大小完全取决于两个条件,一是磁芯任何时候不能饱和,这就要求磁芯要有一定的截面积能够容下足够的匝数(也就是窗口面积);二是温升,包括磁芯的温升以及铜线温升。磁芯的温升受频率,detaB影响,而detaB同样取决于截面积和匝数,不考虑趋肤效应的话,铜线温升又取决于电流密度。归一而论,最后磁芯的截面积Ae和窗口面积Aw决定了磁芯能够做到的功率。
对于初学者,个人感觉没有必要通过计算的方法选磁芯,根据功率,查查前辈们的使用经验,该用多大磁芯也就心里有数。如果是做实验,可以大胆地把磁芯用小,而给客户做产品,就尽可能用大一点的,留足余量。
推挽变压器的匝数怎么算?
匝数的计算,最终的目的有两个:一是使峰值磁通密度Bmax小于饱和磁通密度Bsat,防止磁芯饱和,PC40材质的铁氧体100摄氏度下Bsat=0.39T;二是使磁通密度摆幅detaB控制在一定范围内,通常对于单向摆幅的正激、反激类,detaB取在0.2到0.25之间,对于双向摆幅的推挽、半桥和全桥类,detaB取在正负0.2以内。
下面介绍推挽的怎么算。首先我们要搞清楚推挽的工作频率。对于SG3525,振荡频率计算方法如下:
fosc=1/(Ct*(0.67Rt+3Rd))
千万记住,这个频率是振荡频率,SG3525输出的两路互补方波频率是振荡频率的一半。如果我们取Ct=2.2nF,Rt=10K,Rd=47欧的话,fosc=66KHz,那么输出两路方波的频率就是33KHz,占空比为0.5(死区就忽略了)。
对于正激类的变压器,磁芯是工作在断续模式的,因此可以直接用独立电压方程计算匝数:
N=Von*Ton/(Ae*detaB)
假设使用的是12V电池,那么最高电压接近14V,因此Von=14V,Ton=0.5/f=0.5/33=0.015ms=15us,选用EI33磁芯,Ae=107mm^2,detaB选正负0.16,即0.32,那么:
N=14*15/(107*0.32)=6T
所以,初级绕组我们就采用6+6的结构。 接下来看次级。次级有两种绕法,中抽头接成全波整流的形式或者单绕组接成桥式整流的方式。因为第二种方法变压器磁芯利用率更高且结构更简单,因此采用第二种。
考虑到效率不为1带来的损失及逆变部分占空比的限制,对于220V输出这组,取最低母线电压为220V交流正弦峰值的1.1倍,即310*1.1=340V,这个点对应电池电压接近过放电关机电压10.8V时获得,取电池电压11V,那么匝比为:
n=Vbuik_min/Vbat_min=340/11=31
因此,次级绕组匝数为6*31=186V,以此类推可以得到110V输出绕组的匝数。
按照以上匝比,14V输入时,母线电压为14*31=434V,如果做成准闭环结构,我们可以设定闭环电压在430V附近,防止空载和轻载下电压过高,这样就可以使用450V耐压的电解电容作为母线滤波电容。
准闭环有什么好处?
准闭环在正常负载下其实是开环,开环的话,占空比为50%,输出电压纹波小,不需要储能电感。同时,开环下,动态响应不受环路带宽限制。
母线储能电解用多大容量?
对于准闭环或者开环的推挽,如果不考虑死区,理论上可以不要这个储能电容,但是实际上这个电容由两个用途,一是保持死区时的电压,从这一点考虑,他是储能的作用。而死区往往是很小的,因此,这个电容完全不需要很大的容量,据我实测,1W用个0.1uF应该是足够了。同时这个电容承受的纹波电流也是很小的,可以从仿真直接看,也可以从实测温度看。第二点,这个电容需要处理部分的高频尖峰以及工频纹波,也就是退耦的作用。选得太小的话,初级测的工频纹波会很大,增大了变压器的应力,同时变压器也容易发声。
一般考虑1uF=3W,电容小了也可以工作,但前级滤波压力大了,更重要的一点是要兼顾干扰,电容小干扰就会明显。足够多的容量也保证了足够低的母线内阻。
本篇文章的特殊之处,是对推挽式变压器进行了一部分的讲解,提供了经过实践而得来的经验,较教科书上的知识来的珍贵。不仅如此,在逆变器的设计上,不再仅仅给出参数,而是给出了设计的方法,对初学者来说有非常高的参考价值。
上一篇:LED驱动电源知识集锦
下一篇:楼宇整体消防联动之消防联动应急电源
推荐阅读最新更新时间:2023-10-12 22:52
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Bourns 推出两款厚膜电阻系列,具备高功率耗散能力, 采用紧凑型 TO-220 和 DPAK 封装设计
- Bourns 全新高脉冲制动电阻系列问世,展现卓越能量消散能力
- Nexperia推出新款120 V/4 A半桥栅极驱动器,进一步提高工业和汽车应用的鲁棒性和效率
- 英飞凌推出高效率、高功率密度的新一代氮化镓功率分立器件
- Vishay 新款150 V MOSFET具备业界领先的功率损耗性能
- 强茂SGT MOSFET第一代系列:创新槽沟技术 车规级60 V N通道 突破车用电子的高效表现
- 面向车载应用的 DC/DC 电源
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox