详解隔离式DC/DC转换器电压调节

最新更新时间:2015-03-08来源: 互联网关键字:隔离式  DC  转换器 手机看文章 扫描二维码
随时随地手机看文章
隔离式DC/DC转换器是众多应用所必需的组件,这些应用包括了电能计量、PLC、IGBT驱动器电源、工业现场总线和工业自动化等。此类转换器常用于提供电流隔离、改善安全性及提高抗噪声能力。而且,它们还可用来生成包括双极性电源轨在内的多个输出电压轨。

按照输出电压调节准确度,隔离式DC/DC转换器常常分为三类,即:已调节型、未调节型和半调节型。本文将讨论各种不同的调节方案和对应的拓扑。对影响调节准确度的因素进行了详细地检查。这将形成一些可在实际设计中改善调节准确度的设计小贴士。此外,还阐述了每种方案的优缺点,旨在为选择针对某种特定应用需求的合适解决方案提供指导。

隔离式DC/DC转换器的反馈与控制

隔离式DC/DC转换器通常采用一个变压器,以实现输出和功率级输入的电隔离(图1)。

 

 

在闭环隔离式DC/DC转换器中(图2),反馈电路负责检测输出电压,并通过把检测电压与其目标值(反馈电压基准)进行比较,以生成一个误差。该误差随后被用于调整控制变量(在本例中为占空比)以补偿输出偏差。另外,初级侧与次级侧上的控制电路之间的电流隔离也是必不可少的。此类隔离可通过采用一个变压器或光耦合器来实现。假设基准电压VREF在整个温度范围内保持精准和稳定,那么调节准确度将主要取决于输出电压检测准确度(换句话说就是,VSENSE与VOUT相似度的高低)。

 

 

未调节型隔离式DC/DC转换器

未调节型隔离式DC/DC转换器(也被称为“开环隔离式 DC/DC 转换器”)在那些不需要精准输出电压的应用中得到了广泛的使用。一种典型的应用是具有 50% 固定占空比的推挽式转换器(图3)。控制电路仅包括一个振荡器和两个栅极驱动器,其可产生两个具有50%固定占空比的互补栅极信号,用以驱动Q1和Q2。选择适当的变压器匝数比以提供所需的输出电压。既不需要反馈电路也不需要信号隔离器,从而缩减了成本和解决方案尺寸。

 

 

推挽式转换器实质上是一种正向导出式拓扑(forward-derived topology)。当其以50%的固定占空比运作时,输出电压调节可以使用图4中的等效电路来详细阐述。R是次级变压器绕组和走线的等效电阻。输出电压可由式(1)来表达:

 

 

式中的VR是电阻器R两端的电压降,VF是二极管正向电压降,这两者均与负载电流有关。而且,VR和VF还会随着环境温度而变化,VOUT亦然。如式(1)所示,除了负载电流和环境温度之外,VIN也是影响VOUT的一个因素。这些因素根本没有进行补偿,因而有可能导致显著的输出电压变化。这类转换器之所以被为“未调节型”,原因即在于此。

 

 

与推挽式转换器相似,未调节型隔离式DC/DC转换器的其他常用拓扑是半桥和全桥(H桥)式转换器。由于成本低且电路十分简单,因此这些未调节型隔离式DC/DC转换器常被用作DC变压器,以提供电流隔离。低压降(LDO)稳压器通常用作后置稳压器,以提供低噪声和低纹波电源。

已调节型隔离式DC/DC转换器

在未调节型隔离式DC/DC转换器中,输入电压、负载电流和环境温度均会影响输出电压准确度。在那些精准输出电压和严格调节至关紧要的应用中,这是无法接受的,因而应采用已调节型隔离式DC/DC转换器。我们以图5所示的反激式转换器为例来详细阐述如何实现严格的调节。与未调节型推挽式转换器(图3)相比,已调节型反激式转换器具有一个额外的反馈电路。另外,还采用了一个光耦合器以把控制信号从次级侧传输至初级侧,同时实现电流隔离。

采用光耦合器的优势在于可以把反馈电路布设在次级侧。这样,就能够直接感测和调节输出电压(即 VSENSE=VOUT),这反过来又补偿了输入电压、负载电流和温度对输出电压调节的所有影响。因此,通常可以预期在整个工作输入电压、负载电流和温度范围内实现1%至3%的严格调节准确度。

使用光耦合器也有几个缺点。首先,光耦合器在控制环路中引入了一个额外的极点,这将降低转换器带宽。其次,光耦合器具有很大的“逐件变异”(unit-to-unit variation)以及电流传输比(CTR)中的温度和寿命劣化,因而使得控制环路设计受到约束。

 

 

半调节型隔离式DC/DC转换器

未调节型隔离式DC/DC转换器虽然不需要任何光耦合器,但其无法提供任何的调节。与之相反,已调节型隔离式DC/DC转换器可提供严格的输出电压调节,然而却需要使用一个光耦合器。在许多应用中,客户可能不希望采用光耦合器,但要求对输出电压实施一定程度的调节。所谓“半调节型”隔离式DC/DC转换器将是合适的解决方案。

从输出电压调节的角度来看,半调节型隔离式DC/DC转换器介乎于未调节型和已调节型隔离式DC/DC转换器之间。与已调节型隔离式DC/DC转换器相似,半调节型隔离式DC/DC转换器也具有一个反馈电路。然而,它并不直接感测和调节输出。取而代之的是,它只检测一个与次级侧上的输出电压相似、但通常参考于初级输入电压的电压。这些方法也许不能实现与已调节型隔离式DC/DC转换器准确度相同的输出电压,但其免除了光耦合器,同时获得了相当好的输出电压调节性能。在本文中讨论的三个例子是Fly-Buck转换器、具有交叉调节输出的反激式转换器和初级侧调节(PSR)反激式转换器。

Fly-Buck转换器

Fly-Buck 转换器基本上就是一个同步降压型转换器,它具有一个耦合至其电感器的额外绕组,用以生成一个隔离式输出(VOUT)。除了次级侧上的隔离式输出之外,Fly-Buck转换器还在初级侧上提供了一个已调节输出(VP)。初级侧输出的调节方式与独立型同步降压转换器相同,如式(2):

 

式中的D为图6中的降压开关Q1的占空比。当低压侧同步开关Q2导通时VP反射至次级侧并被整流为VOUT。等效电路示于图7。VOUT可利用式(3)来计算:

 

 

 

 

与式(1)和图4所说明的未调节型推挽式转换器相似,Fly-Buck的隔离式输出是VR和VF(它们均取决于负载电流和温度)的一个函数。然而,VP是一个由反馈电路调节的恒定电压,这就使得VP(因而也包括VOUT)与VIN无关。对于Fly-Buck转换器的隔离式输出,VIN的影响得到了补偿,但是负载电流和温度的影响则并未予以补偿。于是,Fly-Buck转换器归类于半调节型隔离式DC/DC转换器。

当Q1导通时,输出电容器COUT放电,提供负载电流。当Q2导通时,输出电容器电荷得到补充以保持调节作用。实际上,变压器或多或少会有一些漏电感,其决定了次级绕组中用于对输出电容器进行充电的电流的斜坡上升速率。漏电感和占空比会影响输出电压调节。应尽可能地减小漏电感并谨慎地选择最大的工作占空比,以减轻它们对于调节的影响。凭借正确的设计,大概可以实现5%至10%(具体数值取决于负载电流范围)的输出电压调节。

具有交叉调节输出的反激式转换器

反激式转换器能够很容易地生成多个输出,而不必像其他DC/DC转换器拓扑那样常常需要增设额外的输出滤波电感器。在多输出配置中(图8),只有一个输出Vaux是直接调节的,而其他的VOUT则依靠交叉调节。一般地,通过使已调节输出Vaux参考于初级侧上的输入VIN,就能免除图5所示的已调节型反激式转换器的光耦合器。次级侧上的隔离式输出VOUT可由式(4)给出:

 

 

式中的VRs和VRa分别是次级绕组和辅助绕组的等效电阻电压降。VRs、VRa、VFD1和VFD2均为其自身电流的函数。在次级绕组和辅助绕组中流动的电流是不均匀的,因而在VOUT和Vaux之间的负载调节中导致失配。结果,VOUT的负载调节就没有Vaux那么好。隔离式输出与VIN无关,这表明可获得优良的线路输入电压调节性能。由于交叉调节输出取决于负载电流范围,故而通常可以实现5%至10%的输出电压调节。

PSR反激式转换器

虽然线路输入电压调节性能优良,但是Fly-Buck和依赖于交叉调节的反激式转换器均无法补偿负载电流对输出电压调节的影响。因此,输出电压准确度取决于负载电流。PSR反激式转换器(图9)旨在通过更加准确地检测输出电压来最大限度地抑制这种依存性。

 

 

通过运作于不连续导通模式(DCM)或边界导通模式(BCM),次级电流在每个开关周期中恢复至零。图10示出了DCM中的辅助绕组电压分布。PSR反激式转换器通过一个专用的鉴频器和采样器电路在拐点处(此时的次级电流近似为零)检测辅助绕组电压VSENSE。在采样点上,由于次级电流为零,因此在绕组和走线两端没有电阻压降。而且,采样点处的二极管正向压降变成一个常数VOFFSET,这与实际负载电流无关。于是,检测电压变为:

 

 

正因为如此,无论负载电流怎样,VSENSE都很好地代表了输出电压,仅具有一个可通过调整电压反馈电阻分压器予以抵消的固定电压。这样,负载电流对于输出电压调节的影响便得到了最大限度的减弱,并可预期实现上佳的负载调节。由于PSR反激式转换器对线路输入电压和负载变动均实施了补偿,所以能够实现优于5%的总调节性能。

结论

为了实现电流隔离和安全性并改善抗噪声能力,在隔离式DC/DC转换器中对次级侧和初级侧进行了电隔离。功率级和控制电路都运用了这种隔离。输出电压的检测和调节方式决定了输出电压调节准确度。未调节型隔离式DC/DC转换器拥有最低的成本和最简单的电路,但没有调节功能。已调节型隔离式DC/DC转换器可在整个线路输入电压、负载和温度范围内提供严格的调节,但需要使用一个光耦合器或数字隔离器IC。半调节型隔离式DC/DC转换器则在输出电压调节和电路复杂性之间进行了折衷。最合适的解决方案应根据具体的应用需求来选择。

关键字:隔离式  DC  转换器 编辑:探路者 引用地址:详解隔离式DC/DC转换器电压调节

上一篇:基于高压陶瓷电容设计的开关电源优势分析
下一篇:DC-DC转换器与ADC电源接口

推荐阅读最新更新时间:2023-10-12 22:53

高性能、小型化DC/DC应用设计技巧
现在的高效降压DC/DC转换器应用同步整流技术,以满足计算应用的高效要求。驱动器和功率系统必须针对特定工作点进行优化。封装、硅技术和集成技术的进步推动了开关模式电源在功率密度、效率和热性能方面的提高。与分立式方案相比,驱动器加FET(Driver-plus-FET)多芯片模块(MCM)可以节省相当可观的空间。目前的MCM还能提供性能优势,这对笔记本电脑、台式电脑和服务器的电源应用非常关键。 “绿色”系统的发展趋势不仅意味着必须采用环保元器件,还对电子产业提出了节能的挑战。能源之星(EnergyStar)和80+等组织都已针对各式消费电子(特别是计算类)颁布了相关规范。对当前的消费者而言,更长的电池寿命也是个十分吸引的特性。
[电源管理]
高性能、小型化<font color='red'>DC</font>/<font color='red'>DC</font>应用设计技巧
65V、500mA 降压型转换器可轻易地容纳在汽车及工业应用中
引言     汽车和工业系统的发展趋势是采用电子部件取代机械式的功能部件,因而导致其所采用的微控制器、信号处理器、传感器和其他电子器件的数量成倍增加。这里的问题是:24V 车用电气系统和工业设备为电机和螺线管采用了相对较高的电压,而微控制器及其他的电子部件则需要低得多的电压。因此,存在着一种显而易见的需求,这就是需要从高输入电压产生非常低电压的紧凑型高效率降压转换器。 具一个可调输出低至 800mV 的 65V 输入、500mA DC/DC 转换器     LTC®3630 是一款通用的突发模式 (Burst Mode®) 同步降压型 DC/DC 转换器,其包括三种可通过引脚选择的预设输出电压。或者,也可以利用反馈电阻
[电源管理]
65V、500mA 降压型<font color='red'>转换器</font>可轻易地容纳在汽车及工业应用中
ARM 的DCD指令
DCD(或DCDU) 语法格式: 标号 DCD(或DCDU) 表达式 DCD(或DCDU)伪指令用于分配一片连续的字存储单元并用伪指令中指定的表达式初始化。其中,表达式可以为程序标号或数字表达式。DCD也可用 & 代替。 用DCD分配的字存储单元是字对齐的,而用DCDU分配的字存储单元并不严格字对齐。 使用示例: DataTest DCD 4,5,6 ;分配一片连续的字存储单元并初始化。 在中断向量表中不直接LDR PC, 异常地址 .而是使用一个标号,然后再在后面使用DCD定义这个标号,其原因是: LDR 指令只能跳到当前PC 4kB 范围内,而B 指令
[单片机]
MAX7219 数据多路转换器在LED上增加光标功能
转换器是指将一种信号转换成另一种信号的装置。信号是信息存在的形式或载体。在自动化仪表设备和自动控制系统中,常将一种信号转换成另一种与标准量或参考量比较后的信号,以便将两类仪表联接起来,因此,转换器常常是两个仪表(或装置)间的中间环节。
[模拟电子]
智能电磁流量计的转换器在炎热夏季防止遭雷击的措施
夏季来临,雷电气候也越来越频繁, 智能电磁流量计 作为一种高精密电子化的数字型仪表,在使用过程中如何防止遭受雷击而使设备损坏,甚至造成重大损失是需要设备管理人员密切关注的问题,针对这个情况,我们特地撰写此文,提出几点注意事项,各位用户可以据此作参照对本企业的各类仪表设备作出相应的防护措施。 大家知道,电磁流量计是一种精密仪表,是一种依靠电磁感应工作的流量仪表,主要是通过转换器向电磁流量传感器励磁线圈提供稳定的励磁电流,前置放大器将传感器感应的电动势放大、转换成标准的电流信号或频率信号,便于流量的显示、控制与调节。雷电经过电源部分侵入烧坏仪表。雷电产生的同时伴随强大磁场仪表电子元件产生磁感应,瞬间生成强电压和电流,击穿绝缘
[测试测量]
高性能模数转换器ADS8412及其应用
摘要:ADS8412是一款2Msps采样速率的16位逐次逼近(SAR)模数转换器(ADC),主要面向高速、高精度应用,如医学成像、便携式医疗仪器、零等待数据采集系统、数字通信等。文中介绍了ADS8412的性能特点、内部结构及引脚排列,给出了ADS8412和8位通用数据总线微控制器的接口原理图。 关键词:高速 高精度 模数转换器 ADS8412 1 概述 ADS8412是德州仪器公司推出的一款2Msps采样速率的16位逐次逼近(SAR)模数转换器(ADC)。采用P8/P16并行输出,带有内部时钟和基准电压源,无丢失码,2MHz采样频率时的功耗为175mW,SNR为90dB。ADS8412是单极单端输入范围,有16位和8位可选
[模拟电子]
逐次逼近A-D转换器充分利用数字校正及冗余性
  在“ISSCC 2010”的Session21“Successive-Approximation ADCs”上,仅逐次逼近A-D转换器一项就占满了整个会程,足见其性能得到长足进步。无需放大器的逐次逼近是一种适于微细化及低电压化的架构,有很多发表都与充分利用数字校正及冗余性来发挥该架构的特点有关。   发布的内容大致分为三类。第一是利用逐次逼近力争实现高精度。具体而言,模拟器件发表了面向医用X射线数字图像处理的18bit、12.5MHz的 A-D转换器(演讲序号为21.1)。通过对2bit逐次逼近进行两级管线化,实现了18bit、12.5MHz的性能。不过,电源电压为 5V/2.5V,并同时使用0.5μm/0.25μm元器
[模拟电子]
CS5213 HDMI转VGA(带音频)转换器转换ic
CS5213 HDMI 到VGA的显示协议转换器,帶音屏, 用于主板或者dongle的 显示输出,创新点: 1. VGA的输出幅度自动校准算法,可以兼容各种阻抗,输出固定幅 度。 2. HDMI的自适应均衡算法,可以适应各种不同衰减的cable。 3. 单电源设计可以节省BOM成本 4. 内含MCU支持DP++,可将显卡HMDI转为VGA输出,在笔记本 轻薄化趋势下有着稳定的市场需求 CS5213特性: HDMI数字输入 符合HDMI 1.4标准 内置高性能自适应均衡器 支持热插拔检测 VGA输出接口,DAC速度高达~200 MHz像素速率,8位 视频分辨率支持高达1920x1200@60以及1920X1080@60Hz
[嵌入式]
CS5213 HDMI转VGA(带音频)<font color='red'>转换器</font>转换ic
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved