介绍SDRAM电路设计之前先了解下SDRAM的寻址原理。SDRAM内部是一个存储阵列,可以把它想象成一个表格,和表格的检索原理一样,先指定行,再指定列,就可以准确找到所需要的存储单元,这是内存芯片寻址的基本原理,这个表格称为逻辑Bank。由于技术、成本等原因,不可能只做一个全容量的Bank,而且由于SDRAM工作原理限制,单一的Bank会造成非常严重的寻址冲突,大幅降低内存效率,所以在SDRAM内部分割成多个Bank,目前的SDRAM基本都是4个Bank。存储阵列示意如图1所示:
图1 SDRAM存储阵列示意图
图2 SDRAM引脚配置方案
图2是S3C2440A手册提供的SDRAM bank地址的配置方案,维护系统使用的SDRAM是HY57V561620FTP-H,它的规格是4*4M*16bit(使用两片是为了配置成32位的总线宽度),BANK大小是4M*16=64MB,总线宽度是32位,器件大小是4*BANK大小=256Mb,寄存器配置就是(4M*16*4B)*2,根据图2可知,SDRAM上的BANK地址引脚(BA[1:0])与S3C2440的A[25:24]相连。
图3 S3C2440A控制地址总线连接
图3是寄存器控制地址总线连接方式,我们使用2片SDRAM配置成32位的总线宽度,所以SDRAM上的A[12:0]接到S3C2440的A[14:2]引脚。具体的SDRAM电路连接如图4所示:
图4 SDRAM电路连接图
SDRAM的地址引脚是复用的,在读写SDRAM存储单元时,操作过程是将读写地址分两次输入到芯片中,每一次由同一组地址线送入,两次送入到芯片上去的地址分别称为行地址和列地址,它们被锁存到芯片内部的行地址锁存器和列地址锁存器。下面是该芯片的部分信号说明:
nSRAS:SDRAM行地址选通信号
nSCAS:SDRAM列地址选通信号
nSCS:SDRAM芯片选择信号(选用Bank6作为sdram空间,也可以选择Bank7)
nWBE[3:0]:SDRAM数据屏蔽信号
SCLK0[1]:SDRAM时钟信号
SCKE:SDRAM时钟允许信号
LDATA[0:31]:32位数据信号
LADDR[2:14]:行列地址线
LADDR[25:24]:bank选择线
关键字:SDRAM 电路设计
编辑:探路者 引用地址:SDRAM电路设计详解
推荐阅读最新更新时间:2023-10-12 22:53
RS-485电路设计及接口防护
一、电路.
1.1. RS485通讯标准协议.
相信RS485通讯标准大家都已经熟悉了,也不再多说。下面的说明部分在网上广为流传,就抄抄下来吧。
典型的串行通讯标准是RS232和RS485.它们定义了电压,阻抗等。但不对软件协议给予定义,区别于RS232, RS485的特性包括:
a. RS-485的电气特性:逻辑“1”以两线间的电压差为+(2—6) V表示;逻辑“0”以两线间的电压差为-(2—6)V表示。接口信号电平比RS -232-C降低了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方便与TTL 电路连接。
b. RS-485的数据最高传输速率为10Mbps
c. RS-485接口是采用平衡驱
[嵌入式]
LED驱动器:选择匹配具体的应用电路设计
现今的LED照明已具备了多元化的应用场合,从简单的白炽灯或冷阴极荧光灯(CCFL)替代品,到新的建筑、工业、医疗和其他应用。为了在应用中最佳化匹配灯和光亮,不同的LED照明应用通常都有相对应的性能标准要求。 为了驱动LED,工程师可以从琳琅满目的驱动器架构中挑选,然而每一架构都有各自的优缺点,针对具体应用的适应能力有好有坏。选择驱动器架构时需考虑的因素有很多,其中成本占据首要位置,其次是隔离、调光、闪烁、色温、功率因数、可靠性、热管理等问题。 基本的LED驱动器架构有几种:次级侧控制、初级侧控制、隔离式/非隔离式。此外,功率因数控制(PFC)也是在许多应用中的一个主要性能考虑因素,其解决方案由带PFC功能的两级或单级驱
[电源管理]
便携式环境测试仪电源电路设计
实验结果表明, 该电源模块接口丰富、控制灵活, 具有通用性。
环境测试仪是指能够测量温度、湿度、压力、风速等环境参数的仪器。为了满足各种复杂地理环境下的测试需求, 测试仪迫切需要小型化和便携式。为了保持与现有软件的最大兼容性, 我们选用PC104 的系统架构设计了便携式的测试仪。PC104 是IBM PC 兼容工业标准的架构体系。PC104 主板对电源系统要求较高, 设计选用工业级的PC104 电源板, 此电源板支持宽范围输入( DC8~ 36 V) , 效率高达96 % 。为了满足便携性, 系统必须支持电池组供电( 锂电池组或铅酸蓄电池组等) , 由于锂电池组具有单节电池标称电压高、自放电率低、质量能量密度和体积能量密度
[电源管理]
变频智能家电应用电路设计攻略
变频技术是降低电机能源消耗的一种有效手段,变频家电在西方发达国家早已占据了主流,日本2000年变频空调已占空调市场的90%以上,变频冰箱占60%,变频洗衣机占30~40%,而我们国内变频家电的起步较晚,但最近几年发展迅猛,国内各大家电巨头陆续推出了各种变频家电产品。
变频家电的变频控制有多种实现方法,各有利弊,但哪种方法成本更低,效率更高,效果更好则是我们关心的问题。本文由浅至深介绍一种基于 IRMCF341 ($3.8860) 微控制器的无传感器的矢量控制技术变频家电的解决方案,本文略述了变频技术,介绍了 IRMCF341 ($3.8860) 和IPM的相关知识,进而分析 IRMCF341 ($3.8860) 在变
[电源管理]
汽车点火替代电路设计案例
本文为大家介绍一款经典的汽车点火替代电路设计,它的频率为0.5-1.0kHz,用于8缸发动机,怠速为650转,能快速产生火花,占空比为17%,同时元件的功耗限制在一定的范围之内。值得大家学习! 用点火作为替代为点火线圈提供恒定电源。它的频率为0.5-1.0kHz,用于8缸发动机,怠速为650转,该设备能快速产生火花,占空比为17%,同时元件的功耗限制在一定的范围之内。
[电源管理]
技术分享:PCB电路设计中磁珠的作用和注意事项
1. 磁珠 的单位是欧姆,而不是亨特,这一点要特别注意。因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如1000R@100MHz,意思就是在100MHz频率的时候磁珠的阻抗相当于600欧姆。 2.普通滤波器是由无损耗的电抗元件构成的,它在线路中的作用是将阻带频率反射回信号源,所以这类滤波器又叫反射滤波器。当反射滤波器与信号源阻抗不匹配时,就会有一部分能量被反射回信号源,造成干扰电平的增强。为解决这一弊病,可在滤波器的进线上使用铁氧体磁环或磁珠套,利用滋环或 磁珠 对高频信号的涡流损耗,把高频成分转化为热损耗。因此磁环
[电源管理]
APFC自动调压电路设计方案
引言 由于各种原因的影响,电网中存在着电流谐波,由于电网阻抗的存在,谐波电流流过电网阻抗,会使负载端电压波形也出现畸变。此时系统的功率因数小于1,这样会给电网带来“污染”,同时也会影响超声发生器的输出电压和系统的正常工作。因此需要设计特殊电路来对谐波进行抑制,PFC电路就是其中之一。PFC输出的电压一般是恒定的,但是在有些场合些要对输出电压进行调节,利用调节输出电压来控制输出功率等等。因此对PFC输出电压的控制策略的研究具有一定的实际意义。 单相PFC技术 PFC(Power Factor Correction)就是对电流脉冲的高度进行抑制,使电流波形尽量接近正弦波。单相PFC根据采用的具体方法不同可以分为无源功率
[电源管理]
数字射频技术对手机电路设计带来的影响
消费者已经开始将手机作为便携式娱乐终端,集成越来越多的功能与减小手机尺寸、增长电池寿命形成矛盾。解决这个问题的最好办法是从射频部分入手,本文介绍的数字射频技术能有效地降低射频部分的功耗和尺寸。
手机设计工程师希望在不影响电路板面积、耗电量和成本的前提下增加更多消费者想要的功能,最有可能实现此目标的方法是从手机射频电路着手。射频电路大都是模拟器件,不但可能占用高达五成的电路板面积,耗电量也颇为可观。事实上,由于射频器件所需的电路板空间实在太大,当设计工程师为了整合蓝牙、电视、辅助全球定位系统(A-GPS)、无线网络或其它功能而必须在手机中增加无线电电路时,总会发现除了加大产品体积外几乎别无选择。另外,增加射频器件必然会
[手机便携]