眼下,中国的集成电路产业正在加紧追赶世界先进水平的脚步,除了像CPU、、GPU、DSP、FPGA这样的核心处理器之外,我们在高性能模拟器件方面,还处于后来学习者的角色。而ADC/DAC是模数混合IC,是连接模拟和数字世界之间的桥梁,具有很高的技术含量。
ADC、DAC,特别是超高速(采样率≥100Msps)芯片,是未来100G光通信、4G/5G基站、测试测量仪器设备,以及数字雷达等应用领域的核心器件,具有广阔的应用和发展空间。
工作原理及分类
ADC的任务就是将模拟信号转换为数字信号,其性能指标分为两大类,一是动态指标,主要包括:采样率,分辩率(又称采样精度),转换速率(Conversion Rate),无杂散动态范围(SFDR),信噪比(SNR),总谐波失真(THD)等,其中,采样率决定了ADC单位时间内采样的数据量,分辨率决定了采集信号的质量;二是静态指标,主要包括:偏移增益误差(Offset/Gain Error),微分非线性(DNL),积分非线性(INL)等。
按照不同的架构,ADC可以分为Flash、SAR、Pipeline、Σ-Δ以及混合架构等类型。而为了更好地兼容速度、精度以及功耗,混合架构成为了目前研究的热点。
DAC的任务则与ADC正相反,是将数字信号转换为模拟信号,其主要指标也分为动态与静态两种,而DAC的架构主要包括电阻串型、电荷分布型,以及电流舵型,其中,分段式电流舵型是高速、高精度DAC的首选架构。
制程工艺
ADC与DAC所采用的制程工艺主要包括以下三种:CMOS、GaAs HBT和SiGe BiCMOS。其中,CMOS的优点是便于与数字电路集成,且截止频率高、功耗低;GaAs HBT的击穿电压高、但功耗较大;SiGe BiCMOS的截止频率高,且具有抗辐射性,缺点也是功耗较高。
综合考虑来看,CMOS工艺在功耗和集成度方面具有优势,SiGe BiCMOS在提升采样率、抗辐射方面有优势。
市场格局
目前,全球ADC、DAC市场主要被几家跨国大企业所垄断,如ADI、TI、MAXIM、MICROCHIP等,其中,ADI市占率最高,约为58%,TI占比约为25%,MAXIM占7%,MICROCHIP占3%。
随着应用需求不断提升,市场对高速ADC、DAC的需求量越来越大,这里的高速,指的是采样速率≥1Msps,从统计数据来看,仅占6%出货量的高速数据转换器,创造了近50%的行业销售额。
研发历史及现状
随着应用和技术的发展,ADC、DAC也呈现出了越来越清晰的发展趋势,高采样率、高分辨率以及低功耗是未来超高速ADC和DAC的发展方向。在ADC方面,其采样精度和速度是相互制约的关系,大致符合1bit或6dB(以SNDR衡量)/倍频的规律。
目前,超高速ADC、DAC已经成为各大公司和知名科研院所的重点研发项目,纷纷投入了大量人力和财力。
图:ADC、DAC芯片研发历史及现状(来源:中科院微电子研究所)
在ADC方面,国际上,日本富士通公司于2011年研制出了64Gsps、8bit的产品,IBM于2014年采用32nm的SOICMOS工艺,研制了90Gsps、8bit的产品,而作为该领域的霸主级企业,ADI公司于2017年开发出了28nm的10Gsps、12bit产品,这里,在保持较高采样率的情况下,精度提升到了12bit,在业内处于领先地位。
由于ADC是测试测量仪器的核心器件,所以多数仪器厂商都采取自行研发ADC的方式,以满足测试测量仪器的特殊需求,2017年,是德科技(Keysight)研制出了采用28nm工艺的8Gsps、10bit产品。
在示波器中,精度和速度永远是矛盾的,总是相互制约,即ADC的位数和仪器的带宽之间,总是需要权衡,是此消彼长的关系。在这方面,LeCroy区域销售经理Scott Zhang表示,他们正在从8bit进阶到12bit,为此,该公司在研发相关ADC方面投入了很大的财力和人力。因为示波器用的ADC与通用ADC产品不同,大都是由示波器设备厂商自己研发,因为普通ADC的采样率很难满足示波器的需求。
与国际高水平产品相比,我国在ADC方面,存在着2~3代的差距,还处于追赶阶段。目前,国内在这方面处于领先地位的企业和科研院所包括:复旦大学,在2011年研发出了1Gsps、7bit的产品;中电集团24所于2011年研发了2Gsps、8bit的;中科院微电子所则于2016年开发出了32Gsps、6bit的;时代民芯(航天772所)于2013年研制出了3Gsps、8bit的,并于2016年推出了1Gsps、12bit的ADC;而最新的研究成果是,2018年,中科院微电子所研制成功了10Gsps、8bit的ADC。
除了以上企事业单位以外,华为海思也在进行相应的DAC/ADC芯片研发工作,但略显神秘,曝出的产品和技术信息很有限。
另一家本土企业在这方面的研发工作有些争议,就是苏州云芯微,该公司的产品精度较高,有12bit的、14bit的,也有16bit的,且与市场上被普遍采用的ADI公司主流产品的兼容性较好。
在DAC方面,国际上的先进企业主要包括:EUVIS,其在2010年研发出了8Gsps、12bit的产品;NTT公司则于2011年推出了60Gsps、6bit的;Ciena公司在2011年研制出了56Gsps、6bit的;日本富士通公司也在2011年推出了65Gsps、8bit的产品;而行业老大ADI公司,在2017年开发出了一款AD9172,采用28nm制程工艺,精度很高,达到12Gsps、16bit.
国内整体水平与国际先进企业也有着2~3代的差距,走在前沿的企事业单位主要包括:中科院半导体所、昆腾微电子、中科院微电子所,以及复旦大学等。
市场呼唤高性能和新技术
为了满足市场应用的需求,全球的相关企业和科研院所都在高速ADC、DAC的研发方面增加投入,以开创更新、性能更好的技术和架构,如多通道时间交织ADC(TI_ADC)架构,以及分段式电流舵型DAC。目前来看,基于先进的微纳米半导体工艺技术和创新的系统架构设计,是业界开发超高速ADC、DAC的主流路线。
要想创新,就必然要克服各种阻碍和挑战,目前,超高速ADC、DAC就是要实现以更高采样率和更高精度为代表的高性能,这在技术层面要解决两大问题:一是电路架构,二是设计方法。
电路架构层面,就是如何提升电路的采样速率,在ADC方面,业界正在攻坚多路并行采样技术这一难题,而在DAC方面,则需要良好的高速、高线性度设计技术。
目前,业界正在研究用于超高速ADC的时间交织技术,而多通道时间交织ADC(TI_ADC)是实现高采样率的主流架构,该技术的主要挑战在于:通道间的失配对时间交织ADC的性能有着较大影响,如SNR、SFDR的恶化,输出频谱的杂散大,分辨率变差,ENOB减少,输出波形存在失真和抖动。因此,通道间的失配校准是实现TI_ADC架构的关键技术。
在这方面,中科院微电子研究所高频高压中心研究员武锦给出了一套解决方案:可以基于FPGA进行数字模拟混合校正,该方法为单片时钟交织ADC的研究提供了一种设计支撑,其优势在于:算法灵活,硬件开销小,缩短了单片时钟交织ADC的研发周期。
据悉,通过该方法实现了芯片级双通道时间交织4Gsps、8bit的ADC,这在国内同时期是处于领先地位的,当然,与国际高水平产品相比,还是有明显差距的。
在接受半导体行业观察采访时,在中国模拟电路理论研究方面颇有建树,来自于西安交通大学电气工程学院的杨建国教授表示,他在ADC领域研究了多年,并拥有一个特别的ADC专利,采用了新的架构。
据杨建国教授介绍,传统ADC是等时间采样,有一个采样率的概念。但他的ADC不是这样,其数据采集过程就是记录曲线不同位置的点,通过X、Y轴就能确定这些点,传统ADC的核心是默认X是等增量递增的,只记录Y值。他的这个ADC是纵轴上画了好多格子,超越这个格子,跨到另外一个格子的时候就计时,没有信息就不计,他把这个ADC叫转置ADC。这个ADC的突出特色就是采集到的信息不一定要压缩,因为没有信息它不采,如果它采集了就一定是有用信息,因此没有必要压缩。另外,该架构能以数字脉冲的方式传递模拟量,模拟量在时间轴上,这有可能突破现代ADC在纵轴上的瓶颈,比如在讨论0.8微伏的噪声电压时,在纵轴上已经不能再低了,但在时间轴上,时间分辨率更高。这或许也是超高速数据转换器的另外一个发展方向。
杨建国教授表示,他的这种ADC架构完全不同于传统的,模拟量用光传输(可见光或红外线),打出去后能直接把模拟量恢复出来,也可以把音频信息直接恢复出来。另外,在隔离应用方面,这个架构的ADC能突破模拟信号在频率方面的束缚。
在设计方法层面,需要解决信号完整性问题,业界引出了微波电磁场的分析方法。器件和电路的关键在于对信号传输机理和耦合机制的理解和应用,具体如下图所示。
图源:中科院微电子研究所
据武锦介绍,要解决这样的问题,可以通过建立器件全波分析平台来实现模拟电路的全场分析,可以通过建立广义的信号分析网络和“整体分析,局部优化”的信号分析方法,解决信号完整性问题。
可以采用“场路”结合的分析方法,开展高频关键路径的信号完整性研究,基于微波传输和匹配理论可建立超高速数据转换器的设计平台。在这样的平台上,可以进行电磁联合仿真,更准确地提取关键路径的寄生参数,从而基于仿真和理论研究得出设计规则。
通过以上设计方法,可以提升DAC的性能,消除ADC的输出错码,性能也得到了改善。
目前,国内在进行超高速ADC先进技术和架构研究的科研院所主要有中电55所,清华大学,复旦大学,以及中科院微电子所。
从事超高速DAC研究的主要有中电24所,复旦大学,以及中科院微电子所,如复旦大学于2013年研制出了CMOS 1Gsps、12bit的DAC,而中科院微电子所也于2013年研制出了SiGe基10Gsps、8bit的DAC.
综上,像ADI和TI这样的国际大企业,一直处于数据转换器行业的前沿,并引领着发展潮流,此外,高性能测试测量仪器厂商也都有自己的ADC研发团队,不断有高水准的专用产品推出。相比较而言,中国的技术水平和市场影响力还很有限,但我们的市场和应用空间巨大,且数据转换器是连接现实模拟世界和虚拟数字世界之间的桥梁,具有多个关键参数,相应的技术发展永无止境,还需要不断努力。
上一篇:贸泽开售Analog Devices多功能LT8361 DC-DC转换器
下一篇:探讨1200 V 碳化硅 MOSFET的稳固性
推荐阅读最新更新时间:2023-10-12 23:03
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC