浅谈MOSFET驱动电路

最新更新时间:2016-12-14来源: ZLG致远电子关键字:电路  电阻  驱动 手机看文章 扫描二维码
随时随地手机看文章

MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。下面一起探讨MOSFET用于开关电源的驱动电路。

在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。更细致的,MOSFET还应考虑本身寄生的参数。对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。

当电源IC与MOS管选定之后, 选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。

一个好的MOSFET驱动电路有以下几点要求:

(1)   开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。

(2)   开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。

(3)   关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。

(4)   驱动电路结构简单可靠、损耗小。

(5)   根据情况施加隔离。

下面介绍几个模块电源中常用的MOSFET驱动电路。

1:电源IC直接驱动MOSFET

1.jpg

1 IC直接驱动MOSFET

电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。第二,了解一下MOSFET的寄生电容,如图 1中C1、C2的值。如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。如果驱动能力不足,上升沿可能出现高频振荡,即使把图 1中Rg减小,也不能解决问题! IC驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。

2:电源IC驱动能力不足时

如果选择MOS管寄生电容比较大,电源IC内部的驱动能力又不足时,需要在驱动电路上增强驱动能力,常使用图腾柱电路增加电源IC驱动能力,其电路如图 2虚线框所示。

2.jpg

2 图腾柱驱动MOS

这种驱动电路作用在于,提升电流提供能力,迅速完成对于栅极输入电容电荷的充电过程。这种拓扑增加了导通所需要的时间,但是减少了关断时间,开关管能快速开通且避免上升沿的高频振荡。

3:驱动电路加速MOS管关断时间

3.jpg

3 加速MOS关断

关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压快速泄放,保证开关管能快速关断。为使栅源极间电容电压的快速泄放,常在驱动电阻上并联一个电阻和一个二极管,如图 3所示,其中D1常用的是快恢复二极管。这使关断时间减小,同时减小关断时的损耗。Rg2是防止关断的时电流过大,把电源IC给烧掉。

4.jpg

4 改进型加速MOS关断

在第二点介绍的图腾柱电路也有加快关断作用。当电源IC的驱动能力足够时,对图 2中电路改进可以加速MOS管关断时间,得到如图 4所示电路。用三极管来泄放栅源极间电容电压是比较常见的。如果Q1的发射极没有电阻,当PNP三极管导通时,栅源极间电容短接,达到最短时间内把电荷放完,最大限度减小关断时的交叉损耗。与图 3拓扑相比较,还有一个好处,就是栅源极间电容上的电荷泄放时电流不经过电源IC,提高了可靠性。

4:驱动电路加速MOS管关断时间

5.jpg

5 隔离驱动

为了满足如图 5所示高端MOS管的驱动,经常会采用变压器驱动,有时为了满足安全隔离也使用变压器驱动。其中R1目的是抑制PCB板上寄生的电感与C1形成LC振荡,C1的目的是隔开直流,通过交流,同时也能防止磁芯饱和。

除了以上驱动电路之外,还有很多其它形式的驱动电路。对于各种各样的驱动电路并没有一种驱动电路是最好的,只有结合具体应用,选择最合适的驱动。


关键字:电路  电阻  驱动 编辑:王凯 引用地址:浅谈MOSFET驱动电路

上一篇:Vishay密度瞬态电压抑制器可节省电路板空间并降低成本
下一篇:安森美半导体在CES 2017展示全面的USB Type-C方案

推荐阅读最新更新时间:2023-10-12 22:57

单脉冲采样电路
图5.4-76是一单脉冲采样电路。它由N个相同的采样电路,一个模拟多路开关和控制电路组成。当输入的单脉冲电平达到某一阀值时使缓冲器输出启动计数器电路开始计数,计数器的输出送到译码器,其输出就产生相应的输出,作为采样信号,接通相应时刻的采样保持电路。这样在不同的时刻,输入的模拟信号就被在不同时刻的采样电路真实地保存下来。当该模拟信号消失后,可以再接通多路模拟开关重现单次出现的模拟信号。假如控制器是由一个4位二进制计数器和一个四线十六选一译码器组成。在FO时刻,计数器输出为0000,译码器的输出0端产生一个采样脉冲,则FO时刻时,计数器的输出为0001,译码器的1输出端产生采样脉冲,则F1时刻的模拟电压就保持在第二个LF398中...
[模拟电子]
应用于生活和生产的二相混合步进电机驱动研究
引言 步进电机是一种数字电机,具有无累积误差、性价比高等优点,被广泛应用于生活和生产领域中。异于其他电机,步进电机必须使用驱动器才能工作。步进电机运行时存在低频振荡和矩频特性,是设计驱动系统时必须考虑的两大难题。另外,步进动电机需要有升降速过程才能运行平稳。起动时,如果加在电机上的脉冲信号频率过高,则会出现失步或振荡,电机会抖动并有呼啸声。驱动器的性能影响着步进电机的发展前景,因此研究一种高性能步进电机驱动方法具有重要的实际意义。 1 驱动系统的原理与设计 本系统的设计方案采用调频调压驱动方式,系统的硬件电路按功能来划分,主要包含以STM32F103为核心的主控模块、功率驱动电路、调频调压驱动电源和电机电流检测模块。基本框图
[电源管理]
应用于生活和生产的二相混合步进电机<font color='red'>驱动</font>研究
LED控制应用及其对驱动/控制方案要求
 安森美半导体身为应用于高能效电子产品的首要高性能硅方案供应商,针对各种LED应用提供宽范围的LED驱动器方案,其中就包括用于可寻址标志和建筑物装饰照明两类常见应用的系列线性驱动器(详见下表)。这些驱动器能够精确地稳定LED电流,并包含可编程接口,利于软件控制。本文将以CAT4008、CAT4103和CAT9552为例,分别阐述其主要功能和基本工作原理,便于工程师的选型设计。      表1:安森美半导体应用于标志及建筑物装饰照明的系列智能LED控制/驱动器。   针对LED广告牌等应用的恒流汲入型LED驱动器   诸如广告牌标志、滚动横幅、智能车辆标志和体育计分板等LED应用需要采用多颗L
[电源管理]
LED控制应用及其对<font color='red'>驱动</font>/控制方案要求
带有模式抑制电路的Delta-sigma抗混滤波器
用于Delta-sigma数据转换器的抗混滤波器设计方案明显不同于SAR(逐次逼近寄存器)或流水线(高速)转换器的设计方法。拥有SAR或流水线转换器,您即拥有了每次评估一个样本的系统。无论是哪种情况,都可以“抓住”模拟信号,并将其储存于转换器的输入电容阵列。这些转换器评估已存储的信号,并为各个样本提供一个数字表达。对这两款器件,多阶抗混滤波器的目标频率即是该转换器的奈奎斯特频率。    在高采样率(FS,参考1)下,delta-sigma转换器的输入调制器会对输入模拟信号进行多次采样。而后续的Sinc数字滤波器会对一组此类调制器样本进行再次采样,并转换为一个输出的数字表达。从一个调制器的样本串到一个24比特的数字码,这个转换过
[电源管理]
带有模式抑制<font color='red'>电路</font>的Delta-sigma抗混滤波器
智能汽车控制系统硬件电路设计
  智能车又称为无人驾驶汽车,属于轮式移动机器人的一种,是一个集环境感知、路径规划、自动驾驶等多功能于一体的综合系统。智能汽车技术将许多领域联系在一起,如计算机科学、人工智能、图像处理、模式识别和控制理论等。智能汽车与一般所说的自动驾驶有所不同,它更多指的是利用GPS 和智能公路技术实现的汽车自动驾驶。这种汽车不需要人去驾驶,因为它装有相当于人的“眼睛”、“大脑”和“脚”的电视摄像机、电子计算机和自动操纵系统之类的装置,这些置都装有非常复杂的电脑程序,所以这种汽车能和人一样会“思考”、“判断”、“行走”,可以自动启动、加速、刹车,可以自动绕过地面障碍物在复杂多变的情况下,能随机应变,自动选择最佳方案,指挥汽车正常、顺利地行驶。
[嵌入式]
基于6N3双三极管的衰减式唱放均衡电路设计(一)
这个设计其实是应一位老朋友要求进行的,他本来是想用一台采用ECC82的胆前级进行改制,想用在他一台MC头的唱机上进行唱头放大。 我一看参数,ECC82怎么能行?作为唱头放大电路,本来需要对于微弱信号进行放大,ECC82这只放大系数仅为20倍的双三极管如何能够完成任务?就是两级共阴极放大电路的放大能力直接相乘也才多少?更别提衰减式唱放均衡电路,衰减网络对于信号的衰减量,这些对于电路的整体增益都提出了不小的要求。所以,在考虑到这些因素后,决定采用一只较少出现在唱放均衡和前级电路中的6N3国产双三极管设计这个唱放均衡电路。 唱放电路成熟可供选择的并不是太多,成熟厂机采用5670或6N3的制作少之又少,网上许多DIY发烧友自已折腾
[嵌入式]
基于6N3双三极管的衰减式唱放均衡<font color='red'>电路</font>设计(一)
丘克变换器的电压关系及Cuk变换器电路拓补结构
Cuk电路:升/降压斩波器,入出极性相反,电容传输。 电压关系:Uo/Ui=-Δ/(1-Δ)。 图2-5:Cuk变换器电路拓补结构 当开关S闭合时,Ui对L1充电。当S断开时,Ui+EL1通过VD对C1进行充电。再当S闭合时,VD关断,C1通过L2、C2滤波对负载放电,L1继续充电。 这里的C1用于传递能量,而且输出极性和输入相反。
[模拟电子]
STM32F105系列单片机对USB设备电路的设计
当STM32F105配置为USB设备时, PA9/OTG_FS_VBUS是用来检测presense USB主机的。意法半导体设计评估显示PA9/OTG_FS_VBUS引脚通过一个零欧姆电阻连接到5 VBUS 。有这种方法有两个潜在的问题。该第一电势的问题是, PA9/OTG_FS_VBUS输入,虽然它是5V容限,可能损坏(如每ST支持)如果连接到5V时的STM32F105 VDD为0V。这可能发生在两个自供电和主机供电的应用。当电源关闭/拔出,而USB连接到主机仍处于活动状态,这将发生在一个自供电的应用。这将发生在一个主机供电应用过程中所花费的VDD稳压器来达到它的稳压输出电压所需的时间。一些设计师建议之间的PA9/OTG_FS_
[单片机]
STM32F105系列单片机对USB设备<font color='red'>电路</font>的设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved