作者:Wenjia Liu
就像每个MOSFET需要一个栅极驱动器来切换它,每个电机后面总是有一个驱动力。根据复杂程度和系统成本、尺寸和性能要求,驱动电机的方式多样。
最简单和离散的解决方案是由两个晶体管组成的图腾柱/推挽电路。这些晶体管可以是NPN和PNP晶体管的不同组合,产生将输入逻辑信号转换为高电流信号的放大器,其反之又导通和关断MOSFET和IGBT。在图1中,连接了发射器,提供放大输出以驱动FET。这种解决方案已广泛用于许多不同的应用,包括电动机驱动,主要因为其成本低并易于使用,但仍然存在一些限制和缺点。
图1:典型的推挽/图腾柱栅极驱动电路
例如,晶体管会发热,在一些系统中引起散热问题。或者两个晶体管都短暂接通,导致电路直通。对于PCB空间有限的应用,图腾柱电路不是理想的选择,因为它需要多个组件来实现栅极驱动功能。对于更高的输出电压,图1所示的解决方案需要额外的电平移位电路,以便在使用仅提供5V或更低电压的控制器来驱动开关时,实现输出和输入上的电压电平。晶体管和电平移位电路增加了图腾柱电路解决方案的物料清单(BOM)数量和所需的印刷电路板(PCB)空间。
栅极驱动器集成电路(IC)可以解决这些问题。栅极驱动器IC实现与图腾柱电路相同的功能,但有许多额外的好处:
栅极驱动器IC节省了空间和资源,因为它将所有组件集成到单个封装中。因此,物理尺寸较小,设计更直接,装配更容易。
栅极驱动器IC简化了电路板布局,减少了设计不确定性,因为数据表具有所有规格。
驱动电流不限于输入基极电流和增益,因此驱动能力更强,从而减少开关损耗并提高效率。
欠电压锁定(UVLO)和“防直通”等保护功能提高了系统的鲁棒性。
虽然图腾柱电路是作为一种成熟解决方案已流行多年,但现代和未来的系统需要更高的集成度和更高的性能。随着半导体技术的进步,栅极驱动器IC的成本已可与分立电路相比,这使得IC解决方案对于大多数应用而言更具吸引力和可行性。
TI提供广泛的栅极驱动器产品组合,适用于几乎所有市场和应用。TI的栅极驱动器支持非隔离解决方案的电压高达620V,隔离解决方案的电压高达5kV。LM5109B是低于100V的电机解决方案的通用解决方案。有关更多详细信息,请参见TI栅极驱动器页。
若您喜欢集成度更高的解决方案,那么系统级解决方案不仅提供栅极驱动能力,而且还具有MOSFET、片上通信以及不同级别的保护和控制,所有这些都集成在一个芯片中。这些解决方案进一步减少物理尺寸和设计不确定性。例如,TI的DRV8xxx系列是用于有刷直流、无刷直流和步进电机的通用解决方案。有关详细信息,请参阅TI电机驱动器页。
所有选项都有其优缺点,需要选择最适合您系统的选项。使用TI提供的各种解决方案开始设计,您会找到正确的解决方案。
关键字:栅极驱动器 信号转换
编辑:张依敏 引用地址:电机驱动集成的故事
推荐阅读最新更新时间:2023-10-12 22:57
优化信号链的电源系统—第2部分:高速数据转换器
简介 在 电源系统优化 系列文章的 第1部分 ,我们介绍了如何量化电源噪声灵敏度,以及如何将这些量值与信号链中产生的实际影响联系起来。有人问到:高性能模拟信号处理器件要实现出色性能,真正的噪声限值是多少?噪声只是设计配电网络(PDN)时的一个可测量的参数。如 第1部分所述,如果单纯只是最小化噪声,可能需要以增大尺寸、提高成本或者降低效率为代价。优化配电网络可以改善这些参数,同时将噪声降低到必要的水平。 本文在阐述高性能信号链中电源纹波的影响的基础上进一步分析。我们将深入探讨如何优化高速数据转换器的配电网络。 我们将对标准PDN与经过优化的PDN进行比较,了解在哪些方面可以实现空间、时间和成本优化。后续文章将探讨适合其他
[电源管理]
隔离式栅极驱动器设计技巧
功率 MOSFET 是一种电压控制型器件,可用作电源电路、电机驱动器和其他系统中的开关元件。栅极是每个器件的电气隔离控制端。MOSFET 的其他端子是源极和漏极。 为了操作 MOSFET,通常须将一个电压施加于栅极(相对于源极或发射极)。使用专用驱动器向功率器件的栅极施加电压并提供驱动电流。 栅极驱动器用于导通和关断功率器件 。为此,栅极驱动器对功率器件的栅极充电,使其达到最终的导通电压 VGS(ON),或者驱动电路使栅极放电到最终的关断电压 VGS(OFF)。为了实现两个栅极电压电平之间的转换,栅极驱动器、栅极电阻和功率器件之间的环路中会产生一些功耗。 如今,用于中低功率应用的高频转换器主要利用栅极电压控制器件,如M
[嵌入式]
如何选择一台符合需求的信号转换器
在选择信号转换器之前,您需要知道以下几个问题。
1. 信号转换器来作什么?
根据您的使用环境( 工业、广 播、大学、特定市场等),您可能需要一些附 加的功能例如:缩放,远程控制,SDI输出,同步锁相,输出图象的大小和位 置的调整等。
2. 什么类型的电视信号输出可以与我的视频设备相连接?
对于您的选择来说输出信号类型是非常重要的。电视成象设备通常接受不同类型的电视信号,例如:复合视频,S端子,分量视频(YUV)以及RGB信号。
注 意:
信号储存质量在S端子(Y/C)和分量信号比较好;
复合视频信号经常使用于监视屏或低分辨率图象的成象上;
SDI是广播
[模拟电子]
更安全更高效,ST 600V三相智能关断栅极驱动器问市
意法半导体的STDRIVE601三相栅极驱动器用于驱动600V N沟道功率MOSFET和IGBT管,稳健性居目前业内最先进水平,可耐受低至-100V的负尖峰电压,逻辑输入响应速度在85ns以内,处于同级产品一流水平。 STDRIVE601内置智能关断电路,可提高保护功能的启动速度,在检测到过载或短路后,立即关闭栅极驱动器输出。用外部电容和电阻设定断态持续时间,必要时,设计人员可以用较大的C-R值设置所需时间,而不会影响关断反应时间。STDRIVE601具有低电平有效故障指示器引脚。 STDRIVE601可以替代三个半桥驱动器,简化PCB电路板布局设计,优化三相电机驱动器的性能,可以驱动家电、工业缝纫机、工业驱动器和风
[电源管理]
14位转换器可对RF 信号进行直接数字合成
Analog Devices, Inc.最新推出两款可对高至 3.6 GHz 的 RF 信号进行直接数字合成的14位 ADC 。这些高性能转换器为全球通信设备制造商提供了无与伦比的可用带宽和有效动态范围,扩展了 ADI 行业领先的 TxDAC(R) 发送数/模转换器系列 。
新型 AD9789 和 AD9739 TxDAC 采用了 ADI 专利的 Mix-Mode(TM) 超奈奎斯特架构,支持频率高至 3.6 GHz 的 RF 信号的高保真数字合成。最佳的带宽和动态范围与直接 RF 内核相结合,使得宽带和下一代无线设备设计工程师采用单个发送 DAC 架构即可支持多个通信标准,同时免去对片外混频器和低通滤波器的需求,从而
[模拟电子]
技术文章—如何将PWM信号转换为模拟量信号
有一个测量位置变化的位置传感器,用万用表电压档测量传感器的输出信号,结果显示的是模拟量信号,即位置和信号输出大小呈线性关系。但是,用示波器(Picoscope 4227)测量传感器的输出信号,显示的却是PWM信号(脉宽调制),即位置不同,输出PWM信号的占空比不同。 PWM信号的参数是:200 Hz, 低电平为0V,高电平为18V。 现在可以确定,我的传感器输出信号是PWM信号。PWM信号需要输入到控制器I/O中,但是控制器I/O口不具备直接采集PWM信号的功能。 解决方案 设计个电路,将PWM信号转化为模拟量信号,然后将转换后的模拟量信号输入到控制器模拟量I/O口。 转换电路
[测试测量]
ST推出隔离式栅极驱动器,工作电源电压高达1200V
STGAP2SiCS是意法半导体STGAP系列隔离式栅极驱动器的最新产品,可安全地控制碳化硅(SiC) MOSFET,工作电源电压高达1200V。 STGAP2SiCS能够产生高达26V的栅极驱动电压,将欠压锁定(UVLO)阈压提高到15.5V,满足SiC MOSFET开关管正常导通要求。如果电源电压低引起驱动电压太低,UVLO保护机制将确保MOSFET处于关断状态,以免产生过多的耗散功率。这款驱动器有双两个输入引脚,让设计人员可以定义栅极驱动信号的极性。 STGAP2SiCS在输入部分和栅极驱动输出之间设计6kV电气隔离,电隔离有助于确保消费电子和工业设备的用电安全。4A吸电流/拉电流驱动能力使其适用于高端家用电器
[嵌入式]
飞兆半导体的高压栅极驱动器FAN7387
飞兆半导体公司 (Fairchild Semiconductor) 为设计人员提供新一款高性能及设计灵活的低功耗解决方案,即具有自激振荡功能的高压栅级驱动器 FAN7387 ,针对镇流器、 SMPS 和半桥逆变器设计。 FAN7387 是业界唯一带有用于死区时间控制外部引脚的高压栅极驱动器 (HVIC) ,为工程师提供了出色的设计灵活性。这款 HVIC 经设计采用创新的噪声消除技术,高边驱动器运作的负 V s 摆幅高达 -9.8V ,这种特性可保护 IC 免受负噪声影响,且有更强的噪声免疫能力。而其它解决方案必须使用附加的二极管来达到相同的强大保护功能。
飞兆半导体所有 HVIC ,包括 FAN73
[电源管理]