技术文章—消灭EMC的三大利器:电容器/电感/磁珠

发布者:EEWorld资讯最新更新时间:2020-01-23 来源: EEWORLD关键字:EMC  电容器  电感  磁珠 手机看文章 扫描二维码
随时随地手机看文章

滤波电容器、共模电感、磁珠在EMC设计电路中是常见的身影,也是消灭电磁干扰的三大利器。


对于这三者在电路中的作用,相信还有很多工程师搞不清楚,文章从设计中详细分析了消灭EMC三大利器的原理。



01 滤波电容

尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的。

当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上。

在实际工程中,要滤除的电磁噪声频率往往高达数百MHz,甚至超过1GHz。对这样高频的电磁噪声必须使用穿心电容才能有效地滤除。

普通电容之所以不能有效地滤除高频噪声,是因为两个原因:

(1)一个原因是电容引线电感造成电容谐振,对高频信号呈现较大的阻抗,削弱了对高频信号的旁路作用;
(2)另一个原因是导线之间的寄生电容使高频信号发生耦合,降低了滤波效果。
穿心电容之所以能有效地滤除高频噪声,是因为穿心电容不仅没有引线电感造成电容谐振频率过低的问题。

而且穿心电容可以直接安装在金属面板上,利用金属面板起到高频隔离的作用。但是在使用穿心电容时,要注意的问题是安装问题。

穿心电容最大的弱点是怕高温和温度冲击,这在将穿心电容往金属面板上焊接时造成很大困难。

许多电容在焊接过程中发生损坏。特别是当需要将大量的穿心电容安装在面板上时,只要有一个损坏,就很难修复,因为在将损坏的电容拆下时,会造成邻近其它电容的损坏。

02 共模电感

由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一。

共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。

原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。

因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。


image.png


共模电感在制作时应满足以下要求:

(1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路;
(2)当线圈流过瞬时大电流时,磁芯不要出现饱和;
(3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿;
(4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。
通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。
另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。

03 磁珠

在产品数字电路EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。

铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。在高频情况下,他们主要呈电抗特性比并且随频率改变。实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。

实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。

铁氧体是一个消耗装置,高频能量在上面转化为热能,这是由他的电阻特性决定的。铁氧体磁珠与普通的电感相比具有更好的高频滤波特性。

铁氧体在高频时呈现电阻性,相当于品质因数很低的电感器,所以能在相当宽的频率范围内保持较高的阻抗,从而提高高频滤波效能。

在低频段,阻抗由电感的感抗构成,低频时R很小,磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制;并且这时磁芯的损耗较小,整个器件是一个低损耗、高Q特性的电感,这种电感容易造成谐振因此在低频段,有时可能出现使用铁氧体磁珠后干扰增强的现象。

在高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。

但是,这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加,当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。

铁氧体抑制元件广泛应用于印制电路板、电源线和数据线上。如在印制板的电源线入口端加上铁氧体抑制元件,就可以滤除高频干扰。

铁氧体磁环或磁珠专用于抑制信号线、电源线上的高频干扰和尖峰干扰,它也具有吸收静电放电脉冲干扰的能力。使用片式磁珠还是片式电感主要还在于实际应用场合。
在谐振电路中需要使用片式电感。而需要消除不需要的EMI噪声时,使用片式磁珠是最佳的选择。

片式磁珠和片式电感的应用场合


image.png


片式电感:射频(RF)和无线通讯,信息技术设备,雷达检波器,汽车电子,蜂窝电话,寻呼机,音频设备,个人数字助理(PDAs),无线遥控系统以及低压供电模块等。

片式磁珠: 时钟发生电路,模拟电路和数字电路之间的滤波,I/O输入/输出内部连接器(比如串口,并口,键盘,鼠标,长途电信,本地局域网),射频电路和易受干扰的逻辑设备之间,供电电路中滤除高频传导干扰,计算机,打印机,录像机(VCRS),电视系统和手提电话中的EMI噪声抑止。

磁珠的单位是欧姆,因为磁珠的单位是按照它在某一频率产生的阻抗来标称的,阻抗的单位也是欧姆。

磁珠的DATASHEET上一般会提供频率和阻抗的特性曲线图,一般以100MHz为标准,比如是在100MHz频率的时候磁珠的阻抗相当于1000欧姆。

针对我们所要滤波的频段需要选取磁珠阻抗越大越好,通常情况下选取600欧姆阻抗以上的。

另外选择磁珠时需要注意磁珠的通流量,一般需要降额80%处理,用在电源电路时要考虑直流阻抗对压降影响。


关键字:EMC  电容器  电感  磁珠 引用地址:技术文章—消灭EMC的三大利器:电容器/电感/磁珠

上一篇:如果没坏,就不要修理,调节固定增益差分放大器的增益
下一篇:Flex Power Designer又添新功能,节省工程师设计时间

推荐阅读最新更新时间:2024-11-05 12:57

EMC静电放电测试与预防
1引言 在真实生活中,静电是由多种原因产生的,例如薄膜和卷筒之问的摩擦,胶带的分离,物体破损,或者带电的粒子。静电会在各种情景,各种生产设备的各种流程中产生,而主要产生的原因就是重复的摩擦和分离。当电荷累积到一定程度,物体问就会存在电势差,接触或者相互;;::近过程会产生电荷瞬问移动,就会形成静电放电。静电放电经常会影响我们日常所用的电子产品的正常工作,甚至造成静电故障。主要是静电放电的过程是电荷移动的现象,既然有电荷的移动就有可能影响到电子产品的元器件的正常工作,特别是现代基本都是半导体工艺元器件。严重时还可能会造成元器件的损坏,静电故障就是由静电造成电子元件 (例如1C集成电路))损坏的一种现象。当1C中发生静电故障时,由于静电
[电源管理]
<font color='red'>EMC</font>静电放电测试与预防
TDK以新型低电阻树脂电极产品扩展积层陶瓷贴片电容器阵容
积层陶瓷电容器: TDK以新型低电阻树脂电极产品扩展积层陶瓷贴片电容器(MLCC)阵容 实现了与标准产品相当的低电阻,树脂层仅覆盖端子电极的一部分 新3216尺寸产品的电容为10㎌,3225尺寸产品的电容为22㎌ 符合AEC-Q200标准 积层陶瓷电容器: TDK以新型低电阻树脂电极产品扩展积层陶瓷贴片电容器(MLCC)阵容 2021年9月14日 TDK株式会社(TSE:6762)扩展了其CN系列积层陶瓷贴片电容器(MLCC)产品阵容,这是同类产品中的首款产品。新3216尺寸产品(3.2 x 1.6 x 1.6 ㎜)的电容为10 μF,3225尺寸(3.2 x 2.5 x 2.5 ㎜)的电容为22
[电源管理]
TDK以新型低电阻树脂电极产品扩展积层陶瓷贴片<font color='red'>电容器</font>阵容
电感型升压DC/DC转换器的使用常识
什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能?
[电源管理]
<font color='red'>电感</font>型升压DC/DC转换器的使用常识
如何为开关电源选择合适的电感
电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上, 用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的 电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但 是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不
[电源管理]
如何为开关电源选择合适的<font color='red'>电感</font>
EMC的一些基础理论与解释
   1. 为什么要对产品做电磁兼容设计?   答:满足产品功能要求、减少调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。    2. 对产品做电磁兼容设计可以从哪几个方面进行?   答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/ 电源 线滤波、电路的接地方式设计。    3. 在电磁兼容领域,为什么总是用分贝(dB)的单位描述?   答:因为要描述的幅度和频率范围都很宽,在图形上用对数坐标更容易表示,而dB 就是用对数表示时的单位。    4. 为什么频谱分析仪不能观测静电放电等瞬态干扰?   答:因为频谱分析仪是一种窄带扫频接收机,它在某一时刻仅接收某个
[电源管理]
电感不熟不用怕 电感式DC-DC升压讲解
电感 是我们在变压器设计当中较长使用的一种元件,它的主要作用是把电能转化为磁能再存储起来。需要注意的是,虽然电感的结构类似于变压器,但是其只有一个绕组。本篇文章主要介绍了电感式 DC-DC 的升压器原理,并且本文属于基础性质,适合那些对电感的特性并不了解,但同时又对升压器感兴趣的朋友们。文中的一些原理性知识都能在网上查到,所以这里就不多家赘述了。 想要充分理解电感式升压原理,我们就必须首先知道电感的特性,包括电磁的转换与磁储能。这两点非常重要,因为我们所需要的所有参数都是由这两个特性引出来的。 首先,我们先来观察下面的图: 各位朋友都知道,上图是电磁铁,一个电池对一个线圈通电。有人可能会奇怪,这么简单的图有什么好分析的呢?
[电源管理]
<font color='red'>电感</font>不熟不用怕 <font color='red'>电感</font>式DC-DC升压讲解
教你如何正确的为开关电源选择其合适的电感
电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上, 用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有 很大的惯性 。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的 电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和, 也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在 线性区 ,此时电感值为一常数,不随着端电压与电流而变化。但 是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可
[模拟电子]
教你如何正确的为开关电源选择其合适的<font color='red'>电感</font>
R&S成为比亚迪高级驾驶辅助系统EMC测试系统供应商
罗德与施瓦茨(以下简称“R&S公司”)是全球领先的测试与测量供应商,已经与跨国汽车制造商比亚迪汽车达成合作,为其提供增强型电磁兼容 (EMC) 测试系统,用于汽车高级驾驶辅助系统(ADAS)。新解决方案在现有 EMC 测试系统基础上进行升级,可在 EMC 暗室中模拟无线电环境、汽车雷达目标以及视觉目标。测试系统可激活毫米波雷达和摄像头传感器的功能,并评估车辆 ADAS 系统在电磁干扰下的抗干扰特性。这些 EMC 方面的安全性对自动驾驶等新兴技术趋势的发展至关重要。 在存在有害干扰的情况下,如何保证整车的安全性能是OEM 汽车开发商面临的挑战。一项必要的操作便是在车辆级别的模拟驾驶场景中对启用 ADAS 的传感器和无线连接进行
[汽车电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
更多往期活动
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved