电感不熟不用怕 电感式DC-DC升压讲解

最新更新时间:2014-07-20来源: 互联网关键字:电感  电感式  DC-DC  升压讲解 手机看文章 扫描二维码
随时随地手机看文章

电感是我们在变压器设计当中较长使用的一种元件,它的主要作用是把电能转化为磁能再存储起来。需要注意的是,虽然电感的结构类似于变压器,但是其只有一个绕组。本篇文章主要介绍了电感式DC-DC的升压器原理,并且本文属于基础性质,适合那些对电感的特性并不了解,但同时又对升压器感兴趣的朋友们。文中的一些原理性知识都能在网上查到,所以这里就不多家赘述了。

想要充分理解电感式升压原理,我们就必须首先知道电感的特性,包括电磁的转换与磁储能。这两点非常重要,因为我们所需要的所有参数都是由这两个特性引出来的。

首先,我们先来观察下面的图:


各位朋友都知道,上图是电磁铁,一个电池对一个线圈通电。有人可能会奇怪,这么简单的图有什么好分析的呢?我们就是要用这张简单的图来分析它通电和断电的瞬间发生了什么。

线圈(以后叫作"电感"了)有一个特性---电磁转换,电可以变成磁,磁也可以变回电。当通电瞬间,电会变为磁并以磁的形式储存在电感内。而断电瞬磁会变成电,从电感中释放出来。

现在我们看看下图,断电瞬间发生了什么:


前面我说过了,电感内的磁能会在电感断电时重新变回电,然而问题来了:此时回路已经断开,电流无处可以,磁如何能转换成电流呢?很简单,电感两端会出现高压!电压有多高呢?无穷高,直到击穿任何阻挡电流前进的介质为止。

这里我们了解了电感的第二个特性----升压特性。当回路断开时,电感内的能量会以无穷高电压的形式变换回电,电压能升多高,仅取决于介质变的击穿电压。

现在我们对以上的内容作一下小结:

下面是正压发生器,你不停地扳动开关,从输入处可以得到无穷高的正电压。电压到底升到多高,取决于你在二极管的另一端接了什么东西让电流有处可去。如果什么也不接,电流就无处可去,于是电压会升到足够高,将开关击穿,能量以热的形式消耗掉。


然后是负压发生器,你不停地扳动开关,从输入处可以得到无穷高的负电压。


上面说的都是理论,现在来点实际的电子线路图,看看正/负压发生器的"最小系统"到底什么样子:

你可以很清楚看到演变,电路中仅仅把开关换成了三极管换而已。不要小看这两个图,事实上,所以开关电源都是由这两个图组合变换而来,所以掌握这两个图非常重要。


最后要提提磁饱合的问题。什么是磁饱合?

从上面的背景知道我们可以知道电感能储存能量,将能量以磁场方式保存,但能存多少呢?存满之后会发生什么情况呢?

1。存多少: "最大磁通量"这个参数就是干这个用的,很显然,电感不能无限保存能量,它存储能量的数量由电压与时间的乘积决定,对于每个电感来说,这是一个常数,根据这个常数你可以算出一个电感要提供N伏M安供电时必须工作于多高的频率下。

2。存满之后会如何: 这就是磁饱合的问题。饱合之后,电感失去一切电感应有的特性,变成一纯电阻,并以热的形式消耗掉能量。

经过分析和总结,相比大家都掌握了比较重要的几个核心电路图。并且也对其中的原理有了一定的理解,希望各位朋友能够充分理解这篇文章,从而灵活的应用到自己的设计当中去。

关键字:电感  电感式  DC-DC  升压讲解 编辑:探路者 引用地址:电感不熟不用怕 电感式DC-DC升压讲解

上一篇:基于CSU8RP3125芯片的电子烟解决方案
下一篇:系统讲解VIPER26LD反激电源的参考设计

推荐阅读最新更新时间:2023-10-12 22:43

基于MC34063的DC-DC电路变换的低成本实现
   引言       在电源电路中,出于温升、效率以及其它因素的考虑,DC-DC变换应用很多,本文介绍一种低成本的DC-DC变换实现方案,它可以实现降压、升压与电压反转应用,其电路简单、成本低廉、效率高、温升低,这些电路被广泛应用。   电路的核心元件是MC34063,它是一种单片双极型线性集成电路,专用于直流-直流变换器控制部分,片内包含有温度补偿带隙基准源、一个占空比周期控制振荡器驱动器和大电流输出开关,能输出1.5A的开关电流。它能使用最少的外接元件构成开关式升压变换器、降压式变换器和电源反向器。   MC34063的封装形式为塑封双列8引线直插式,内部电路原理框图如图1所示。    1 工作原理
[电源管理]
基于MC34063的<font color='red'>DC-DC</font>电路变换的低成本实现
LLC谐振转换器可提升DC-DC效率
近年来,日益增长的电源需求已直接使得用数字控制实现AC-DC和DC-DC电源转换成为最新趋势。数字控制具备了设计灵活性、高性能和高可靠性。为了实现更高效的电源,人们正在考虑使用不同的拓扑结构实现DC-DC转换。本文将讨论电感、电感、电容(LLC)谐振转换器的数字控制、谐振转换器的优势以及数字控制的整体优势。   数字控制解决对电源的需求 由于许多电源在大部分时间内工作负载远低于最大负载或是工作效率最高时的负载,在正常模式和低功耗模式下,经常要求提高效率。例如,80 PLUS计划要求115V电源在20%、50%和100%的额定负载下至少达到80%的效率。在这些工作点实现更高效率可获得铜级、银级、黄金级或白金级的评级。对于230
[电源管理]
LLC谐振转换器可提升<font color='red'>DC-DC</font>效率
双管正激式转换器/两个滤波电感并联输出
  两个双管正激式转换器有各自的滤波电感,并联接到共用的滤波电容上。每个正激式转换器的工作状态基本上不会因为并联输出而改变,每个正激式转换器的输出电流I。为总输出电流的一半,即   式中 Io2——两个正激式转换器的输出总电流。
[电源管理]
双管正激式转换器/两个滤波<font color='red'>电感</font>并联输出
DC-DC电源模块选型
DC/DC模块电源以其体积小巧、性能卓异、使用方便的显着特点,在通信、网络、工控、铁路、军事等领域日益得到广泛的应用。怎样正确合理地选用DC/DC模块电源呢,笔者将从DC/DC模块电源开发设计的角度,谈一谈这方面的问题,以供广大系统设计人员参考。 DCDC的意思是直流变(到)直流(不同直流电源值的转换),只要符合这个定义都可以叫DCDC转换器。具体是指通过自激振荡电路把输入的直流电转变为交流电,再通过变压器改变电压之后再转换为直流电输出,或者通过倍压整流电路将交流电转换为高压直流电输出。 1 电源模块选择需要考虑的几个方面 额定功率 封装形式 温度范围与降额使用 隔离电压 功耗和效率
[电源管理]
迈来芯推出新款高速电感式电机位置解码器 简化汽车电气化系统
据外媒报道,全球微电子工程公司迈来芯(Melexis)宣布推出新型全新抗杂散场电感式芯片MLX90510。该芯片可在极端机械和电器条件下实现高速解码,最大限度地减少电子控制单元(ECU)所需的工作量,从而获得最佳精度。凭借其卓越的电磁兼容性(EMC),MLX90510非常适合电机控制、电子制动助力器和电子助力转向应用。 (图片来源:迈来芯) MLX90510是迈来芯首款面向开放市场的电感式传感器IC,在速度高达240,000 e-rpm的条件下可提供不低于+/-0.36°的卓越精度。该芯片专为高精度、EMC和安全要求的苛刻高速传感应用而设计,主要用于电机(e-axle)、电子制动助力器和电动助力转向应用。 迈来芯电感
[汽车电子]
迈来芯推出新款高速<font color='red'>电感式</font>电机位置解码器 简化汽车电气化系统
搭配电感拓扑,利用小讯号MOSFET降低电源转换功耗
  现代的电子装置设计须提供多个不同的直流(DC)电压,导致内部电路须透过升压与降压方式转换电压,为装置中负责不同功能单元供电;其中,在高效率DC-DC电源转换设计方面,以电感为基础的转换拓扑,以及应用于各种开关的金属氧化物半导体场效电晶体(MOSFET)已变得相当重要。    电感拓扑改善DC-DC转换效率   以新一代小讯号MOSFET为例,具有低汲极(Drain)/源极(Source)导通电阻(RDSon)和良好的开关性能,并采用小型扁平封装,开启中功率开关模式DC-DC转换的应用新领域。儘管高效率电源亦可采用整合型方案,但系统厂考量设计灵活性和成本,仍广泛使用外部功率开关。   由于电荷帮浦等应用常受到低电流的限制,对高
[电源管理]
搭配<font color='red'>电感</font>拓扑,利用小讯号MOSFET降低电源转换功耗
LC振荡电路测量电容和电感的设计原理
文中针对电容和电感的测量,简单介绍了关于LC振荡电路测量电容和电感的设计原理。同时通过实验证明该方案能进行高频电感和电容的测量。测量的精度能达到应有要求。   1 测量原理 采用LC振荡器的振荡原理,LC振荡器选择L或是C参数为固定值。通过LC的组合,振荡器起振,当测量电容时电感固定,测量电感时电容固定。通过LC振荡器的频率计算公式 其中 可以计算出待测的电容或电感数值。   2 电路工作原理 2.1 电路框图设计 如图1所示。框图包括输入切换部分、振荡部分、分频部分、单片机部分、显示部分和键盘部分。此系统由STC89C51单片机作为控制核心,输入切换部分采用双刀双掷继电
[测试测量]
LC振荡电路测量电容和<font color='red'>电感</font>的设计原理
电感分裂式推挽换向软开关技术的研究
    摘要:提出一种电感分裂式推挽换向软开关电路,分析该电路的工作原理及实现软开关的条件,仿真结果表明该电路控制简单、性能可靠,特别适用于中、小功率场合。     关键词:电感分裂式  推挽换向  软开关  仿真 1 引言   推挽电路因控制简单、无直通现象等优点,在中、低电压输入变换器中得到广泛应用,但推挽电路中两个开关管处于硬开关状况,随着开关频率的增高,开通功耗较大 。桥臂换向软开关在桥式变换器(包括半桥变换器)中得到广泛应用,如移相全桥软开关电路 ,但桥臂换向软开关无法在推挽电路中应用,虽然文献 , 对推挽软开关作过探讨,但它只能应用于双管推挽电路,且增加一只开关管的导通损耗,这对低电
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved