安森美650V SiC满足高可靠性的应用

发布者:EEWorld资讯最新更新时间:2021-05-10 来源: EEWORLD关键字:安森美  SiC 手机看文章 扫描二维码
随时随地手机看文章

随着宽带隙技术在传统和新兴电力电子应用中的不断普及,半导体公司正以惊人的速度开发其产品。 2021年,安森美半导体发布了650 V碳化硅(SiC)MOSFET技术,以支持从数百瓦到数十千瓦的直流电源需求,包括汽车牵引逆变器,电动汽车(EV)充电,太阳能逆变器等应用,服务器电源单元(PSU)和不间断电源(UPS)。


SiC MOSFET已被证明是高功率和高电压设备的理想选择,其目标是替代硅(Si)功率开关。 SiC MOSFET使用一种全新的技术,该技术提供了比硅更好的开关性能和更高的可靠性。此外,低导通电阻和紧凑的芯片尺寸确保了低电容和栅极电荷。因此,这些设备的系统优势包括更高的效率,更快的工作频率,更高的功率密度,更低的EMI以及更小的系统尺寸。


安森美半导体的新型汽车级AECQ101和工业级的650 V NTH4L015N065SC1 SiC MOSFET带来了新的机遇。NTH4L015N065SC1 SiC MOSFET的有源单元设计与先进的薄晶圆技术相结合,可为击穿电压为650 V的设备提供性能更好的Rsp(Rdson *面积)。 NTH4L015N065SC1还具有市场上最低的TO247封装Rds(on)之一。内部栅极电阻(Rg)消除了使用外部栅极电阻人为降低设备速度的需求,从而为工程师提供了更大的设计灵活性。更高的抗浪涌,雪崩能力和短路的鲁棒性有助于增强其坚固性,从而提供更高的可靠性和更长的器件寿命。这些设备无铅且符合RoHS要求。


NTH4L015N065SC1技术参数


与硅器件相比,安森美半导体的SiC MOSFET的介电击穿场强高10倍,电子饱和速度高2倍,能带隙高3倍,热导率高3倍。NTH4L015N065SC1 SiC MOSFET器件具有出色的动态和热性能,并在高结温下稳定运行。在相同范围内,与SiC MOSFET相比,650V NTH4L015N065SC1器件提供的竞争特性如下:


最低导通电阻:典型RDS(on)= 12 m @ VGS = 18 V&典型RDS(on)= 15 m @ VGS = 15 V

低电容和超低栅极电荷:QG(tot)= 283 nC

高开关速度和低电容:Coss = 430 pF

在175摄氏度的高结温下稳定运行

具有AEC-Q101认证的卓越雪崩耐用性

 

image.png

图1:NTH4L015N065SC1 SiC MOSFET(图片来源:安森美半导体)


我们通常习惯于将三个端子(栅极,漏极和源极)用于Si MOSFET。图1表示NTH4L015N065SC1 SiC MOSFET的引脚图和符号表示。快速浏览NTH4L015N065SC1 SiC MOSFET的数据表,就会发现两个源极端:“驱动器源”和“电源”。驱动器源实质上是驱动栅极的电路的参考端,它减少了负载电流路径中电感的负面影响。


SiC MOSFET的电(静态)表征包括经过评估的性能参数的DC和AC表征。下图(图2)传达了NTH4L015N065SC1 SiC MOSFET在安全工作区域内的载流能力。当漏极至源极电压(VDS)较低时,最大电流受导通状态电阻的限制。在中等VDS时,该设备可以在短时间内承受数百安培的电流。


image.png

图2:NTH4L015N065SC1 SiC MOSFET安全工作区(图片来源:安森美半导体)


汽车用SiC MOSFET


通过设计SiC MOSFET可以改善许多电源电路和器件。汽车电气系统是该技术的最大受益者之一。现代的EV / HEV包含使用SiC器件的设备。一些流行的应用是车载充电器(OBC),DC-DC转换器和牵引逆变器。图3指出了电动汽车中需要大功率开关晶体管的主要子系统。 OBC的DC-DC转换器电源电路将高电池电压转换为较低电压,以操作其他电气设备。电池电压现在高达600或900伏。具有SiC MOSFET的DC-DC转换器可将此电压降低至48伏,12伏,以用于其他电子组件的操作。OBC系统中的SiC MOSFET允许在更高的频率下开关,提高效率并减少热管理。使用新型SiC MOSFET可实现更小,更轻,更高效,更多的性能可靠的电源解决方案。


image.png

图3:用于HEV和EV的WBG车载充电器(OBC)。 交流输入经过整流,功率因数校正(PFC),然后进行DC-DC转换,其中一个输出用于给高压电池充电,另一个输出用于给低压电池充电。 (图片来源:安森美半导体)

关键字:安森美  SiC 引用地址:安森美650V SiC满足高可靠性的应用

上一篇:Vishay新款交流滤波薄膜电容器可在高湿环境下持续稳定工作
下一篇:英飞凌推出集成驱动器和开关的GaN功率产品

推荐阅读最新更新时间:2024-10-29 15:47

一文读懂第三代半导体材料的特性、应用
导语 半导体材料 是半导体产业发展的基础,20世纪30年代才被科学界所认可。随着半导体产业的发展,半导体材料也从一代、二代发展到现在的第三代,本文着重分析第三代半导体材料的特性、应用,以及我国第三代半导体材料发展面临的机遇和挑战。   作为一种20世纪30年代才被科学界所认可的材料—半导体,其实它的定义也很简单。众所周知,物资存在的形式多种多样,固体、液体、气体、等离子体等,其中导电性差或不好的材料,称为绝缘体;反之,导电性好的称为导体。因此,半导体是介于导体和绝缘体之间的材料。   半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(Zn
[嵌入式]
基于SiC414设计的6A降压电源稳压技术
基于SiC414设计的6A降压电源稳压技术 SiC414是Vishay公司的集成了5V/200mA LDO的6A降压电源稳压器,开关频率高达1MHz,全部采用陶瓷电容.连续输出电流达6A,效率大于95%,内部软起动和软关断,主要用在笔记本电脑,台式电脑和服务器,数字HDTV和消费类电子,网络和通信设备,打印机,DSL和STB,嵌入式应用和点负载电源.本文介绍了SiC414主要特性, 功能方框图, 典型应用电路图和SiC414评估板电路图以及材料清单(BOM). SiC414 pdf: http://www.elecfans.com/soft/39/2010/2010032371827.html The Vishay Si
[电源管理]
基于<font color='red'>SiC</font>414设计的6A降压电源稳压技术
意法半导体发布两款灵活多用的电源模块,简化SiC逆变器设计
2022 年 9 月 13日,中国—— 意法半导体发布了两款采用主流配置的内置1200V 碳化硅(SiC) MOSFET的STPOWER电源模块。 两款模块都采用意法半导体的ACEPACK 2 封装技术,功率密度高,安装简便。 第一款模块 A2F12M12W2-F1 是一个四组模块,可为 DC/DC 转换器等电路提供方便紧凑的全桥功率变换解决方案。 第二款模块 A2U12M12W2-F2 采用三电平T型逆变拓扑,导通能效和开关能效均很出色,输出电压质量稳定。 这两款模块中的 MOSFET采用意法半导体的第二代 SiC 技术,RDS(on) x 芯片面积品质因数非常出色,确保开关可以处理高电流,把功率损耗降至很低。
[电源管理]
意法半导体发布两款灵活多用的电源模块,简化<font color='red'>SiC</font>逆变器设计
安森美发布用于电动车充电的完整碳化硅MOSFET模块方案 ​
安森美半导体在APEC 2021发布 新的用于电动车充电的完整碳化硅MOSFET模块方案 全面的宽禁带器件组合实现高性能充电方案 2021年6月8日—推动高能效创新的安森美半导体 (ON Semiconductor),发布一对1200 V完整的碳化硅 (SiC) MOSFET 2-PACK模块,进一步增强其用于充满挑战的电动车 (EV) 市场的产品系列。 随着电动车销售不断增长,必须推出满足驾驶员需求的基础设施,以提供一个快速充电站网络,使他们能够快速完成行程,而没有“续航里程焦虑症”。这一领域的要求正在迅速发展,需要超过350 kW的功率水平和95%的能效成为“常规”。鉴于这些充电桩部署在不同的环境和地点,紧凑性、
[电源管理]
安森美推出新的触摸/接近传感方案
安森美半导体(ON Semiconductor)推出新的触摸/接近传感方案,将领先业界的性能、性价比和便利整合到单个芯片。LC717A30UJ高动态范围电容数字转换器采用互电容以检测低至毫微微法拉级(fF)的电容变化。消除寄生电容提高探测器的灵敏度,而其内置的噪声抑制机制抑制电磁干扰(EMI)的影响。 8个电容传感输入通道使LC717A30UJ高度优化用于需要一系列开关的系统。该器件包括一个用于输入通道选择的集成的多路复用器、模数转换器、确定电容变化及模拟输出幅值的双级放大器、系统时钟、上电复位电路和所需的所有控制逻辑以创建一个整体方案。可基于系统应用需求选择I2C和SPI接口。 由于该器件的灵敏度范围为150毫米(mm), 超
[嵌入式]
安森美LED区域照明应用解决方案
随着人们节能环保意识的日渐增强,业界越来越关注能源消耗对环境的影响。在各种能源消耗途径中,据统计,有高达20%至22%的电能用于照明。提高照明应用的能源使用效率乃至进一步降低其能源消耗,有助于减少二氧化碳排放,造就更加绿色环保的世界。因此,高能效照明正在成为业界竞逐的一个焦点。   从应用领域来看,照明涵盖住宅照明、工业照明、街道照明和餐厅、零售及服务业照明等不同类别。而从功率等级来看,除了低功率照明,也包括大功率区域照明,典型应用如柱灯、洗墙灯、外墙灯、隧道照明、街灯、停车场及公共安全照明、工业及零售照明等室外照明,以及低顶灯、高顶灯、冻柜/冰箱及停车库等室内照明。   大功率区域照明存在不少挑战,如灯具可能难
[电源管理]
<font color='red'>安森美</font>LED区域照明应用解决方案
如何使用负载分担方法提升输出电流能力
  引言   在便携电子设备等空限受到高度约束的应用中,其中一个主要的集成电路(IC)选择标准是封装尺寸。大多数模拟IC制造商能够提供空间效率极高的封装,如uDFN或uCSP。然而,在模拟功率分配方面,这类超小型封装IC的主要限制就是功率耗散。因此, DC-DC转换器 最大电流能力在1.5 A至2 A范围。虽然这电流对绝大多数应用都足够,但某些应用可能需要超过1.5 A至2 A的电流。在这种情况下,不仅是对于手持设备设计人员,还是IC制造商,使用超小型封装 DC-DC转换器 都具挑战;而随着更大功率需求的出现,此前业界广泛提供的低于1.5 A高集成IC的阵容也大幅变窄了。   要提供这样的大输出电流,并联2个通用 DC-D
[电源管理]
安森美碳化硅专家点评平面和沟槽之争,以及碳化硅的成功之道
“中国是全球最大、增长最快的纯电动汽车市场,中国 OEM 正在采用安森美的碳化硅解决方案,因为我们的芯片和模块(例如我们刚刚发布的 M3e)具有市场领先的效率。”安森美CEO Hassane在一次电话会上表示。 实际上,安森美碳化硅的成长已经得到了普遍证实。Yole Intelligence高级分析师Poshun Chiu在2023年的一篇报告中指出,主要的 IDM 都在利用快速增长的功率碳化硅器件市场(该市场规模较 2022 年第一季度增长了一倍),但安森美半导体的增长率超过了同行,包括市场领导者意法半导体。 随着市场对高效、绿色产品的热衷,以电动汽车为代表的新一代消费火热,也使得碳化硅越来越成为市场炙手可热的卖点。而纵
[电源管理]
<font color='red'>安森美</font><font color='red'>碳化硅</font>专家点评平面和沟槽之争,以及<font color='red'>碳化硅</font>的成功之道
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved