适用于电流模式DC-DC转换器的统一的LTspice AC模型

发布者:EE小广播最新更新时间:2022-02-09 来源: EEWORLD作者: ADI公司 Wei Gu,应用总监关键字:电流模式  DC-DC  转换器  LTspice 手机看文章 扫描二维码
随时随地手机看文章

A Unified LTspice AC Model for Current-Mode DC-to-DC Converters


适用于电流模式DC-DC转换器的统一的LTspice AC模型


简介


当电源设计人员想要大致了解电源的反馈环路时,他们会利用环路增益和相位波特图。知道环路响应可进行预测有助于缩小反馈环路补偿元件的选择范围。生成增益和相位图的精准方法是:在试验台上连接电源,并使用网络分析仪;但在设计的早期阶段,大部分设计人员会选择采用计算机模拟,通过模拟快速确定大致的元件选择范围,并且,更直观地了解环路对参数变化的响应。


本文主要研究适用于电流模式控制电源的反馈控制模型。电流模式控制在开关模式DC-DC转换器和控制器中相当常见,相比电压模式控制,它具有多项优势:更出色的线路噪声抑制、自动过流保护、更易于进行并联操作,以及得到改善的动态响应。


设计人员已经可以采用大量电流模式电源平均模型。有些模型的精准度达到开关频率的一半,可以匹配不断增高的转换器带宽,但只适用于有限的拓扑,例如降压、升压,以及降压-升压拓扑(非4开关降压-升压)。遗憾的是,适用于SEPIC和Ćuk等拓扑的3端口或4端口平均模型的精准度还达不到开关频率的一半。


本文将介绍LTspice®模拟模型,其精准度达到开关频率(甚至是相对较高的频率)的一半,适合多种拓扑,包括:


  • 降压 

  • 升压

  • 降压-升压

  • SEPIC

  • Ćuk

  • 正激式

  • 反激式


本文展示分段线性系统(SIMPLIS)结果模拟,以确定新模型的有效性,并举例说明模型的具体应用。在一些示例中,使用测试结果来验证模型。


电流模式控制模型:简要概述


在这部分,我们将重申关于电流模式控制模型的一些要点。为了更全面地了解电流模式模型,请参阅文末“参考资料”部分中提到的刊物。


电流环路的作用在于:让电感电流循着控制信号的路线行进。在电流环路中,平均电感电流信息被反馈给具有检测增益的调制器。调制器增益Fm可通过几何计算得出,前提是,假设恒定电感电流斜坡上升,外部补偿电流也斜坡上升。为了模拟电感电流斜坡上升变化的影响,我们在模型中额外增加了两个增益:前馈增益(kf)和反馈增益(kr),如图1所示。


 image.png

图1.电流模式控制的平均模型,绘图:R. D. Middlebrook


为了将图1所示的平均模型的有效性扩展到高频范围,研究人员基于离散时间分析和样本数据分析的结果,提出了几种经过改进的平均模型。在R. B. Ridley的模型(参见图2)中,采样保持效应可以用He(s)函数等效表示,它可以插入连续平均模型的电感电流反馈路径中。由于该模型是从离散时间模型演化而来,所以能够准确预测次谐波振荡。


 image.png

图2.经过改进的电流模式控制的平均模型,绘图:R. B. Ridley


另一种经过改进的平均模型由F. D. Tan和R. D. Middlebrook提出。为了考虑电流环路中的采样效应,必须在源自低频模型的电流环路增益上再增加一个极点,如图3所示。


 image.png

图3.经过改进的电流模式控制的平均模型,绘图:F. D. Tan


除了R. B. Ridley的模型外,R. W. Erickson提出的电流控制模型也很受欢迎。电感电流波形如图4所示。

 

image.png

图4.稳态电感电流波形,包含外部补偿斜坡上升


平均电感电流表示为:

 image.png


其中iL表示检测到的电流,ic表示误差放大器发出的电流命令,Ma表示外加补偿斜坡,m1和m2分别表示输出电感电流的上升和下降斜坡。扰动和线性化结果:

 image.png


根据此公式和规范开关模型,可以得出电流模式转换器模型。


一个经过改进的新平均模型


R. W. Erickson的模型可以帮助电源设计人员从物理角度深入了解,但其精准度还不到开关频率的一半。为了将该模型的有效性扩展到高频范围,我们基于离散时间分析和样本数据分析的结果,提出了一种经过改进的平均模型(参见图5)。


 image.png

图5.提出的经过改进的电流模式控制平均模型


根据电感动态采样数据模型,可以得出:

 image.png

其中,T为开关周期,

 image.png


可以得出图5所示的模型的Gic(s):

 image.png


其中ωc是内部电流环路Ti的穿越频率,如图5所示,关于各种拓扑的值ωc,请参见表1。


表1.不同拓扑的内部电流环路交叉频率(ωc)


image.png


降压转换器示例


在图5中,我们将Fv反馈环路与iL反馈环路并联。我们也可以将Fv反馈环路作为iL反馈环路的内部环路。图6显示了包含附加的Gic(s)级的完整降压转换器模型。


 image.png

图6.经过改进的降压转换器平均模型的框图


控制至输出传递函数Gvc (s)为

 image.png


电流环路增益Ti (s)和电压环路增益Tv (s)可以通过以下公式计算得出:

 image.png


 image.png


其中:

 image.png


在图7中,基于新电流模式模型计算得出的环路增益与SIMPLIS结果一致。在这个示例中,VIN = 12 V,VOUT = 6 V,IOUT = 3 A,L = 10 µH,COUT = 100 µF,fSW = 500 kHz。


 image.png

图7.MathCAD结果与SIMPLIS结果(fSW = 500 kHz)的对比


采用LTspice的4端口模型


基于图5所示的经过改进的平均模型构建了一个4端口模型。在闭环操作中,这个4端口模型可以使用标准的电路分析程序(例如免费的LTspice)来分析PWM拓扑,以确定DC和小信号特征。


图8显示了使用LTspice对各种拓扑实施模拟的模拟原理图,对每种拓扑都使用相同的模型。图中未显示反馈电阻分压器、误差放大器和补偿元件。要对真实的DC-DC转换器模型使用此模型,应将误差放大器的输出连接至VC引脚。


 image.png

图8.使用LTspice模型来模拟多种拓扑:(a)降压,(b)升压,(c) SEPIC,(d) Ćuk和(e)反激式。


关于图8所示的各种LTspice行为电压源指令,请参见表2。E1表示开关开启时加在电感上的电压,E2表示开关关闭时加在电感上的电压,V3表示斜坡补偿幅度,Ei表示电感电流。


表2.图8所示的电路的LTspice行为电压源指令


image.png


图9显示了采用2个独立电感的SEPIC转换器的模拟结果,该结果与一半开关频率时的SIMPLIS结果匹配。在这个示例中:VIN = 20 V,VOUT = 12 V,IOUT = 3 A,L = 4.7 µH,COUT = 120 µF,C1 = 10 µF,fSW = 300 kHz。


 image.png

图9.SEPIC转换器的LTspice模拟结果和SIMPLIS模拟结果(fSW = 300 kHz)对比


 image.png

图10.LT3580 LTspice模型

 image.png

图11.波特图(fSW = 2 MHz)


 image.png

图12.使用LT8714的4象限控制器LTspice模型


新模型的测试验证


图11所示的新LTspice模型针对以前传统模型不支持的拓扑进行了测试验证,包括Ćuk、4象限和4开关降压-升压拓扑。


在测试台上验证Ćuk控制器模型


LT3580是一款包含内部2 A、42 V开关的PWM DC-DC转换器。LT3580可以配置为升压、SEPIC或Ćuk转换器,其AC模型适用于所有这些拓扑。图10显示了一个Ćuk转换器,其中,fSW = 2 MHz,VOUT = –5 V。图11比较LTspice模拟波特图和实际测试结果,在一半开关频率范围内,它们非常一致。


在测试台上验证4象限控制器模型


LT8714是一款专为4象限输出转换器设计的同步PWM DC-DC控制器。输出电压通过吸电流和灌电流输出功能,不受干扰地转换通过0V。配置用于新的4象限拓扑时,LT8714非常适合用于调节正、负或0V输出。应用包括:4象限电源、高功率双向电流源、有源负载,以及高功率、低频信号放大。


基于CONTROL引脚电压,输出电压可能为正,也可能为负。在图12所示的示例中,当引脚电压为0.1 V时,输出电压为–5 V,当引脚电压为1 V时,输出电压为5 V,VIN为12 V,开关频率为200 kHz。


图13比较通过LTspice模拟得出的波特图和实际测试得出的图——在开关频率的一半范围内,它们的结果非常一致。控制电压(CONTROL)为1 V,这使得VOUT (OUT)为5 V。


 image.png

图13.波特图(fSW = 200 kHz)

 image.png

图14.波特图(fSW = 200 kHz)


 image.png

图15.LT8390 LTspice模型


图14比较通过LTspice模拟得出的波特图和实际测试得出的结果——在开关频率的一半范围内,它们的结果非常一致。控制电压(CONTROL)为0.1 V,这使得VOUT (OUT)为-5 V。


在测试台上验证4开关降压-升压模型


LT8390是一款同步4开关降压-升压DC-DC控制器,可根据高于、低于或等于输出电压的输入电压调节输出电压(和输入或输出电流)。专有的峰值-降压/峰值-升压电流模式控制方案支持可调节的固定频率运行方式。


LT8390 LTspice AC模型通过监测输入和输出电压,自动从四种运行模式中选择一种:降压、峰值-降压、峰值-升压和升压。图15显示LT8390示例电路。图16和图17分别显示降压和升压模式的LTspice模拟结果和实际测试结果。在开关频率的一半范围内,两条曲线非常一致。

 

image.png

图16.波特图(fSW = 150 kHz)。VIN = 20 V,VOUT = 12 V,IOUT = 5 A


 image.png

图17.波特图(fSW = 150 kHz)。VIN = 8 V,VOUT = 12 V,IOUT = 5 A


总结


通过建立这个电流模式控制模型,既可以提供样本数据模型的准确性,也可以提供4端口开关模型的简洁性和通用性。本文展示一个统一的LTspice模型,在一半开关频率内,该模型保持准确,适用于降压、升压、降压-升压、SEPIC、Ćuk、反激式和正激式拓扑。将LTspice模拟结果与实际测试结果比对,以进行验证。在连续导通模式下设计电流模式转换器时,此模型适用于分析环路。


作者简介


Wei Gu是电源产品应用总监。他于2006年加入ADI公司(以前为凌力尔特)。他获得了浙江大学颁发的电气工程学士学位,以及中佛罗里达大学颁发的电气工程博士学位。


关键字:电流模式  DC-DC  转换器  LTspice 引用地址:适用于电流模式DC-DC转换器的统一的LTspice AC模型

上一篇:ST 数字可降压变换器提高USB供电设计的简易性和灵活性
下一篇:罗姆推出新型超高效可折叠电池管理系统评估板

推荐阅读最新更新时间:2024-11-21 13:48

德州仪器推出集成型编解码器与数模转换器升级系列
德州仪器 (TI) 宣布推出面向电子书 (eBooks)、移动因特网设备以及便携式导航设备的音频编解码器与数模转换器 (DAC)。与分立式实施方案相比,这些高集成编解码器(TLV320AIC3100、TLV320AIC3110、TLV320AIC3111、TLV320AIC3120)和数模转换器(TLV320DAC3101、TLV320DAC3100、TLV320DAC3120)可显著降低组件数量与系统成本,并支持增强型音频特性,可提升消费者的聆听体验。此外,这些器件还具有引脚对引脚及软件兼容性,可简化软硬件开发,加速产品的上市进程。申请编解码器样片,敬请访问: http://focus.ti.com.cn/cn/docs/
[模拟电子]
德州仪器推出集成型编解码器与数模<font color='red'>转换器</font>升级系列
12位串行高速A/D转换器ADS7822的功能特点及应用设计
1 引言 ADS7822是一种12位的串行高速,其A/D转换器采样速率为75kHz、功耗低75 kHz下的功耗为0.54mW,7.5 kHz下的功耗为0.06mW)。 2 引脚排列及功能框图: 引脚功能说明如下: ADS7822的引脚排列如图1所示,功能框图如图2所示。 3 ADS7822的电特性 ADS7822的时序如图3所示,其最大额定电参数和典型电参数如表1和表2所示。 4 变速箱换挡力数据采集系统设计 4.1 系统硬件设计 该系统以Philips公司的LPC932单片机作为控制器,将拉压力传感器检测的变速箱换挡力数据经放大器(AD632)送人高速A/D转换器,转换结果送单片机并通过串口发送互便携式PC,
[单片机]
12位串行高速A/D<font color='red'>转换器</font>ADS7822的功能特点及应用设计
采用DC/DC转换器提高RF PA系统效率
    从功率预算的角度而言,直接由电池供电的射频功率放大器(RF PA)是需要重点考虑的元件。传统上,CDMA/WCDMA蜂窝标准中使用的射频功率放大器都直接由电池供电,这种供电方式使系统很容易设计,但是,这种标准中使用的线性功率放大器在整个发射功率范围内的实际效率很低。本文讲述一种通过DC/DC转换器提供高效RF PA系统电源管理的方案。      随着蜂窝标准的不断发展,传输速率已从CDMA-1标准中的14.4kbps发展到CDMA2000/WCDMA标准中的2Mbps。此外,为了增加从每个用户获得的平均收入,蜂窝通信运营商已开始增加与3G电话相关的服务。同时,通话时间和电池寿命也期望采用具有同样或稍高一些容量的电池来获得提
[网络通信]
技术分析:LED电源电感式DC-DC升压原理
电感是我们在变压器设计当中较长使用的一种元件,它的主要作用是把电能转化为磁能再存储起来。需要注意的是,虽然电感的结构类似于变压器,但是其只有一个绕组。本篇文章主要介绍了电感式DC-DC的升压器原理,并且本文属于基础性质,适合那些对电感的特性并不了解,但同时又对升压器感兴趣的朋友们。文中的一些原理性知识都能在网上查到,所以这里就不多家赘述了。   想要充分理解电感式升压原理,我们就必须首先知道电感的特性,包括电磁的转换与磁储能。这两点非常重要,因为我们所需要的所有参数都是由这两个特性引出来的。   首先,我们先来观察下面的图:   各位朋友都知道,上图是电磁铁,一个电池对一个线圈通电。有人可能会奇怪,这么简单的图有什么好分析的呢
[电源管理]
技术分析:LED电源电感式<font color='red'>DC-DC</font>升压原理
基于EWB的D/A数模转换器的仿真研究
随着计算机技术的发展,电子设计自动化(EDA)技术得到了广泛的应用。EWB电子工作台作为一种功能强大的EDA计算机辅助设计和仿真软件[1],与其他电路仿真软件相比较,具有功能全面、界面直观、操作方便等优点。 DAC作为沟通模拟量和数字量的桥梁,在各种检测、控制和信号处理等技术领域得到日益广泛的应用。本文采用Electronics Workbench(EWB)构造了DAC的仿真模型,并给出了仿真结果。 1 仿真原理 DAC主要由模拟电子开关、电阻解码网络、求和运算放大器和基准电压源(或恒流源)组成,如图1所示。位权网络目前用得较多的是T形电阻网络,一个D/A转换器要使输出的模拟电压与输入的数字量成正比。图中,D是n位二进制数,2
[模拟电子]
高效DC-DC转换器,占用面积等同于LDO
效率的重要性日益提高,面对 能源 价格不断上涨以及对全球变暖的日益关注,设计高效率“绿色”电路将有效降低运行成本以及对环境的影响。 在注重成本的应用中,普遍选用LDO稳压器从3.3V输入产生1.5V/3A输出。由于LDO需要耗散很大功率(5.4W),必须选择TO220或D2PAC封装。为降低功耗,在低端服务器设计中开始用开关调节器取代LDO稳压器。然而,现有的LDO设计电路板空间非常有限,多数情况下,这个空间对于一个完整的开关调节来说过于拥挤。例如,两个1206 陶瓷 电容 和D2PAC封装的LDO稳压器占用面积约为18mm x 14mm。要将一个开关调节器装配到这么小的面积内非常困难,特别是在需要外部MOSFET的情况下。 MAX
[模拟电子]
高效<font color='red'>DC-DC</font><font color='red'>转换器</font>,占用面积等同于LDO
ADI推出新型数模转换器 可高密度模拟输出模块无须降额使用
中国,北京 -- Analog Devices, Inc. (ADI) 今日推出一款数模转换器(DAC) AD5758。它集成了ADI公司第二代动态功率控制(DPC)功能,支持高密度模拟输出(AOUT)模块并且不需要降额使用(即不会因热量累积而需关闭通道),从而实现更低成本、更紧凑的设计。这款带DPC的单通道电流/电压DAC设计用于工厂自动化、过程自动化和电机控制中的通道间隔离工业应用。AD5758是ADI公司功耗最低的工业DAC。 AD5758大小为5 mm x 5 mm,在业界同类产品中尺寸最小。其结构坚固,所需外部保护元件更少,支持更小、更低成本的设计。它配备先进的诊断技术,有助于了解系统性能状况,以实现更高的可靠性及安
[模拟电子]
4A、4MHz稳压器工作在-55°C至125°C
凌力尔特公司推出 LTC3414 塑封 TSSOP-20 版本。该器件是一个高效率、4MHz 同步降压型稳压器,采用恒定频率、电流模式架构。在电压低至 0.8V 时能提供高达 4A 的连续输出电流。LTC3414 采用 2.25V 至 5.5V 的输入电压工作,非常适用于单节锂离子电池或镍氢金属电池应用、以及更加通用的固定电压轨系统。MP 级版本在 -55oC 至 125oC 的工作结温范围内运作,经过测试并在整个温度范围内得以保证。反馈电压规格略有降低 (±5%),但其余电气性能规格与 E 级和 I 级版本相同。 LTC3414 是易遭遇极端环境温度的军事和航空应用的理想选择。 LTC3414MPFE 采用 TSS
[新品]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved