本文介绍如何利用波特图来快速评估您的电源设计是否满足动态控制行为要求。电源通常通过控制环路保持固定的输出电压。这个控制环路可能稳定,也可能不稳定;可以快速调节,也可以慢速调节。在大多数情况下,都可以使用波特图来描述控制环路。通过使用波特图,您可以查看控制环路的速度,特别是其调节稳定性。
图1.使用控制环路(以绿色显示)来调节其输出电压的开关稳压器示例
图1所示是采用降压拓扑的典型开关稳压器。它将较高的输入电压转换为较低的输出电压。目标是尽可能准确地调节输出电压VOUT。为此,通过反馈(FB)引脚将控制环路集成到电路中。它可以检测到VOUT的电压变化。控制环路应能够快速响应,以便始终尽可能准确地调节VOUT。每当输入电压或负载电流发生变化时,都必须重新调节输出电压。
图2.显示控制环路增益的波特图(约80 kHz时,达到0 dB交越点)
图2所示为波特图中控制环路的增益曲线,其中提供了两条重要信息。可以得到增益等于1(即0 dB)时的频率。对于图2所示的控制环路,这个所谓的交越频率出现在约80 kHz处。根据经验,此频率不得超过开关模式电源的设定开关频率的十分之一。否则,可能会导致电路不稳定。图中显示的第二条重要信息是增益曲线下方的区域,即函数积分。直流增益和交越频率越高,控制环路就能更好地让输出电压保持恒定。
图3.控制环路的相位曲线,相位裕量为60°
图3显示波特图中的相位曲线。从该图中可以读取的最重要的参数值是相位裕量。通过这个数值可以判断控制环路的稳定性。相位裕量可以从增益图中的交越频率处读取(参见图2)。在所示的示例中,交越频率为80 kHz。所以,图3中的相位裕量约为60°。相位裕量低于约40°即被视为不稳定。当相位裕量在40°和70°之间时,控制环路设置良好。在此范围内,能够较好地同时兼顾调节速度和稳定性。相位裕量高于70°时,系统非常稳定,但是调节速度非常慢。
开关稳压器的数据手册中一般不提供波特图。原因在于,波特图在很大程度上取决于电路设计。使用的开关频率、选择的外部元件(例如电感和输出电容),以及各自的工作条件(例如输入电压、输出电压和负载电流)都会产生巨大影响。所以,一般使用计算工具(例如LTpowerCAD®)或仿真工具(例如LTspice®)生成波特图。借助这些工具生成波特图,您就可以快速判断设计的电路是否能够满足动态控制行为要求。
作者简介
Frederik Dostal曾就读于德国埃尔兰根大学微电子学专业。他于2001年开始工作,涉足电源管理业务,曾担任各种应用工程师职位,并在亚利桑那州凤凰城工作了4年,负责开关模式电源。他于2009年加入ADI公司,并在慕尼黑ADI公司担任电源管理现场应用工程师。联系方式:frederik.dostal@analog.com。
关键字:波特图 开关稳压器
引用地址:
电源设计:如何利用波特图来满足动态控制行为的要求
推荐阅读最新更新时间:2024-11-10 12:09
工业处理器的板载电源设计方案解析
介绍了DC/DC开关稳压电源系统的设计,电源的拓扑采用全桥电路图拓扑、倍流同步整流方式。设计了一款为工业处理器供电的板载电源产品,进行了功率器件的选型并对影响电源效率的主要功率损失进行了分析,完成此款电源产品的PCB设计。最终的分析结果显示,此款电源产品的电性能参数符合客户的预期效果,并成功应用在工业处理器供电设备上。 0引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高,不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低而电流却越来越大。输出电压会从过去的3.3 V降低到1.1~1.8 V之间,甚至更低。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它
[电源管理]
1.2至33伏直流数字电压电源设计
说明 这是一个简单的构建微控制器控制的电源,可以切换 1.2至33伏直流和高达3安培之间预先设定的电压(或32个或更多)。本指南将通过建设过程中的每一个方面,然而,一些电子和微控制器的基本熟悉将需要对微控制器编程。规格 输入电压:33伏直流最大 输入电流:3安培最大 输出电压:5至预置电压1.2至33 **伏直流 输出电流:3安培最大 *有没有整流桥,所以输入电压必须 DC **输出电压 说明 该电路的哈特是一个LM350可调正电压稳压器(T2)。稳压器,能够提供超过3安培以上的输出电压范围为1.2VDC到33Vdc。它易于使用,热过载保护,较大的电压范围,电流限制,高纹波抑制
[单片机]
开关电源设计:何时选择BJT优于MOSFET?
MOSFET已经是是开关电源领域的绝对主力器件。但在一些实例中,与MOSFET相比,双极性结式晶体管 (BJT) 可能仍然会有一定的优势。特别是在离线电源中,成本和高电压(大于 1kV)是使用BJT而非MOSFET的两大理由。 在低功耗(3W 及以下)反激式电源中,很难在成本上击败 BJT。大批量购买时,一个 13003 NPN 晶体管价格可低至 0.03 美元。该器件不仅可处理 700V VCE,而且无需过大的基流便可驱动几百毫安的电流。使用 BJT,增益和功率耗散可能会将实际使用限制在低功耗应用中。在这些低功耗标准下,MOSFET 与 BJT 之间的效率差异非常细微。下图 1 对比了两个相似 5V/1W 设计的效率。第一个
[电源管理]
意法半导体(ST)与Wurth Elektronik合作提升在线电源设计环境
中国,2017年3月31日 —— 横跨多重电子应用领域、全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)进一步扩大其 eDesignSuite在线设计环境,增加变压器 大厂Wurth Elektronik公司的变压器产品,帮助客户提升新项目的开发速度和成本效益。 目前越来越多的电子产品设计都是在元器件厂商发布的在线设计环境内完成的,这些在线设计工具让客户免费使用,提供电路快捷设计模板、产品选型工具、评测性能的仿真器,以及技术支持和产品订购通道。意法半导体的eDesignSuite可以加快电路系统设计,包括开关电源(SMPS)、LED照明、滤波器、电机驱动器等。
[电源管理]
以16位单片机8XC196MC为内核的逆变电源设计
1、引言 近来,逆变电源在各行各业的应用日益广泛。本文介绍了一种以16位单片机8XC196MC为内核的逆变电源系统的设计。8XC196MC片内集成了一个3相波形发生器WFG,这一外设装置大大简化了产生同步脉宽调制波形的控制软件和外部硬件,可构成最小单片机系统同时协调完成SPWM波形生成和整个系统的检测、保护、智能控制、通讯等功能。 2、电源系统的基本原理 该电源由蓄电池输入24V直流电,然后通过桥式逆变电路逆变成SPWM波形,经低通滤波器得到正弦波输出。SPWM波形由8XC196MC的3相波形发生器WFG产生,可输出所需电压和频率的正弦波。 3、系统硬件设计 该逆变电源系统可实现调频、调压功能。通过A/D转换,自动反馈调
[电源管理]
单片机在电源设计应用中的优点分析
电源设计人员经常面临种种互相对立的要求。一方面要缩小体积、降低成本,另一方面又要提供更多功能并提高输出功率。受原理上的限制,模拟电源本身的功能有限,而模拟电源控制器的设计更是越来越复杂。由于这一原因,有些设计人员转向了纯数字电源设计。然而,对于许多设计人员来说,如此快速地转向不熟悉的领域并不容易。比较可行的一种折衷方法是采用传统模拟电源,但增加数字单片机做为前端。 这种设计的优点在于电源本身的控制仍然使用模拟技术来实现。因此电源设计人员不需要从头重新开始全数字设计就可以为现有设计增加新的功能。采用这种方法,设计中仍然使用熟悉的误差放大器、电流检测以及电压检测电路。当然,尽管有些设计单元(如补偿网络)仍然采用分立器
[单片机]
用于汽车启停的低耗能电源设计的几种方法
随着城市快节奏的发展,大多数人拥有自己的车,这也使得交通变得拥堵,而汽车在高峰期的走走停停会耗掉很多的能源,不仅浪费还污染环境。故而引进了汽车系统中的“启停”功能,但是这种系统也给汽车电子带来了一些独特的工程技术挑战,汽车启停系统中电源设计是一大难题。本文就为大家介绍一种用于汽车启停的低耗能电源设计。 为了控制燃油消耗,许多汽车制造商在下一代汽车中实现了“启停”功能,而且为数众多的这种汽车已经开始上路。这些系统会在汽车停下来时关闭发动机,当脚从刹车踏板移动到加速踏板——或者在使用手动档情况下释放离合器踏板重新接入动力时又自动重新启动发动机。在城市行驶和停停走走的高峰时段这种功能非常有助于减少燃油消耗。 然而,这种系统也给汽车
[电源管理]
高精度数字跟踪式压电陶瓷驱动电源设计
近年来,新型高压大电流集成放大器广泛使用于压电陶瓷驱动电源的设计中,然而压电元件表现出的电容性和功率运放较高的输入失调电压(几十毫伏),使得压电陶瓷电源控制存在精度不高、稳定性较差以及非线性失真等缺点。而且模拟信号发生器的频率分辨率低且跟踪迟滞 ,也降低了压电陶瓷的动态响应速度。因此设计一种高精度、稳定性好的数控压电陶瓷电源是实现微位移控制、非线性检测以及微机电系统转换的关键 。 1 压电陶瓷驱动电源 压电陶瓷驱动电源由自适应数字信号发生器、D/A转换、复合放大器、高压直流电源、相位补偿和保护电路等组成,如图1所示。其中复合式放大器优化了前级输入结构,采用高精度低漂移的低压运放与高压集成功率运算放大器级联,在高
[电源管理]