机顶盒与液晶电视用的低价简易开关电源设计

最新更新时间:2006-08-28来源: 电子产品世界关键字:电容  电压  电感  电流 手机看文章 扫描二维码
随时随地手机看文章

前言

  传统电子消费产品的AC-DC开关电源,通常需要带有多组输出隔离变压器并由一片原边电源控制器控制输出电压和电流,但这类多组输出电源的输出电流都比较小,稳定的输出电压是通过线性稳压管来实现。从设计与制造及使用的角度来看,比较麻烦而且成本也较高。需指出的是,其线性稳压管只能应用于高电压和低电流,故此种电源在应用上局限性很大,己远远不能适应新一代电子消费产品的需要。

  这是由于新一代电子消费产品如机顶盒,液晶电视(或高清晰度电视)需要的是能提供大输出电流和低输出电压的低价高效率开关电源,从而促使许多产品设计需采用分散式电源模式,也就是说,产品设计更倾向于选择在市场上很容易采购到的AC-DC适配器并把多组直流电源直接安装在系统的线路板上。

  特别要说明的是,由于系统主芯片的电压越来越低而且电流越来越大,这样就可以使越来越多的直流开关电源能出现在系统板上的新型工装技术。

  而要提供一系列价格低廉,线路简单,性能齐全直流开关电源,其关键在于是如何应用低廉、简单,性能齐全的电源控制芯片。Semtech International公司的低价简易同步式降压控制芯片SC2618不失为一种好的选择,用SC2618只需较少外围元器件就能设计出低电压高效率降压电源。

用SC2618设计简易同步降压电源

  图1为用同步式降压控制芯片SC2618与双场效应功率管AO4812集成块设计组成的机顶盒和液晶电视及其它消费电子产品所需的板上开关直流电源线路图。

  此电源的输入电压Vin由交流变直流适配器提供,Vin大多数为12V/5V(也有少数会用24V),输出电压是1.8V,输出电流是3.5安培。SC2618能接收4.5V至14V工作电压并有一个1.25V内部电压基准。0.5安培的场效应管驱动能使电源的输出电流达到10安培。SC2618不需要反馈补偿电路。


图1 用SC2618和AO4812设计的机顶盒和液晶电视等消费电子产品所需支流开关电源图

  由图1可看到,一组分压电阻(R6,R8)会将输出电压Vout信息反馈给SC2618芯片的?FB端如果输出电压Vout低于所设定的数值,高端的场效应管Q1将被导通并一直导通到输出电压Vout回升到设定的数值以上。同样的道理,如果输出电压Vout高于用户所设定的数值,高端的场效应管将被关断而低端的场效应管Q2将被导通并一直导通到输出电压下降到设定的数值以下。这种芯片模式将会使一个降压式电源工作在以下任何一种模式:
·高端场效应管导通1微秒;
·低端场效应管导通1微秒;
·高/低端场效应管各导通1微秒;

  输出短路保护是通过SC2618的反馈端电压(VFB)和它的1.25V内部电压基准电压来实现的。在正常工作时如果反馈端电压小于1.25V基准电压200mV,SC2618立刻关断高端场效应管同时内部软启动电容开始放电。如果输出短路是发生在软启动过程中,必须等软启动结束才能彻底关断场效应管并开始软启动电容放电。一旦软启动电容放电结束,新的一轮软启动又开始。

SC2618在宽输入电压时的应用线路

  虽然SC2618Vcc只能接收4.5V—14V之间的输入电压,但是只要在芯片的外围增加一个非常简单的线性稳压管(一个小信号晶体管和一个齐纳二极管)就可以很容易地将输入电压的范围升到20V以上。同时可以利用一个外围晶体管来关断芯片。这种电路可用在许多需要24V输入电压工作的消费类产品中。



图2 用SC2618设计的宽输入电压电路

  图2是一个可以工作到24V输入电压的完整电路图。输入电压可以是5Vto24V,输出电压是3.3V,输出电流是3.5A。图2中6.2V的齐纳二极管将SC2618Vcc电压限制在5.5V左右。上(高)端和下(低)端场效应管的驱动电压也在5.5V。可以通过晶体管Q3来关断整个电源。

  这样的电路在机顶盒、液晶电视等产品上经常看到。像SC2618这样的同步式降压电路比许多非同步式电路在高输入电压的应用中有较大的优势。

功率场效应管的选择

  由于本直流开关电源是同步降压转换器,即有着高输入电压对低输出电压的特点,故高端场效应管导通的时间很短,低端场效应管导通的时间很长,但是低端场效应管转换电压几乎为零。在这样的应用中,栅极电容较小(内阻较大)场效应管适用于高端开关,栅极电容较大(内阻较小)场效应管适用于低端开关。在该例子中所用的场效应管是通过它的内阻(RDSON)、栅极电容/电荷和封装热阻这3个参数来选择的。利用SC2618 0.5A内置驱动器,一个栅极电荷为25nC的场效应管会产生大约50ns的开关升/降时间(ts=25nC/0.5A)。ts会在高端场效应管开关时产生开关损耗(Ps)。

  在图1中,Ps是0.3W。由于在高端和低端场效应管之间无重叠传导,流过低端场效应管漏极和源极的寄生二极管或外部肖特基二极管总是在低端场效应管导通之前导通。低端场效应管导通电压仅为一个在漏极和源极之间二极管的电压。低端场效应管开关损耗为零。

  以图1为例,选用的场效应管是A04812。A04812高低端导通内阻都是28mΩ,在3.5A负载时高低端导通损耗是0.35W。整个AOS4812损耗为0.65W,在3.5A负载下AOS4812损耗为0.65W,这时AO4812 SOIC8封装结温是111.5℃。这数值远小于芯片150℃结温限制。对于大电流输出上的应用(>3.5A),可以采用低内阻抗场效应管来限制它的导通损耗,并利用外加散热器将它的结温控制在110℃之内。

开关电源其它元件的选择

  由于SC2618不需要反馈补偿电路,故不需要设计补偿网络参数。整个电源所需要设计的参数只包括输出电感、输出电容、反馈分压电阻、输入电容、场效应管。

输出电感L
  输出电感L的选择基于输出DC和瞬态的要求。大的电感值可减小输出纹波电流和纹波电压,但是在负载瞬变过程中改变电感电流的时间会加长。小的电感值可得到低的直流损耗,但是交流磁芯损耗和交流绕线电阻损耗会变大。折衷的方法是选择电感纹波电流峰峰值Ip-p在输出负载电流额定值的20%到30%之间。
  以图1的线路为例,Vin=12V,Vout=1.8V,Iout=3.5A,fosc=150KHz,计算出来的电感值是14.5μH.可选用市场上很容易采购到的15μH/5A表面贴电感。

输出电容Cout

  输出电容应按照输出电压纹波和负载动态变化要求来选择。输出电感产生的纹波电流会在输出电容串联等效电阻(ESR)上产生输出电压纹波(VRIPPLE)。为了满足输出电压纹波要求,输出电容寄生串联电阻(ESR)必须满足下式:

  以图1为例,Vin=12V,Vout=1.8V,fosc=150KHz,L=15μH,VRIPPLE=60mV,那么计算出输出电容串联等效电阻(ESR)会在输出负载电流变化时产生一个电压变化值(VT)。为了满足输出电压电压变化值要求,输出电容串联等效电阻(ESR)必须同时满足下式: 

  以图1为例,如果输出电压动态变化值是输出电压值的10%(VT=10%×1.8V=180mV),如果负载电流变化值是lA,所需要的输出电容的ESR是180mΩ。为了同时满足输出电压纹波和动态变化,应该选择最小ESR的电容。所以,在本例中选用90mΩ,1000μF/16V电解电容。

反馈分压电阻R6与R8

  高端的反馈分压电阻Rtop(R6)可在5KΩ~15KΩ之间选择。低端的电阻值Rbot(R8)。最终经实验调整为22.1KΩ。一般来讲Rtop和Rbot应选用1%精密电阻。
输入电容C1(Cin) 我们选择1000μF,90mΩ电解电容。

PCB排版

  同步降压开关电源PCB排版(即线路板制作)是非常重要,它是关系到设计好的电源能否在系统上正常工作的关键。

  正确的开关电源PCB排版需要设计人员对开关电源工作原理有一定的了解,特别是设计人员需要知道高频交流电流的走线,并且能够区分低信号控制电路部分和大功率元器件走线部分。

  以图1为例,将分成控制电路部分和功率电路部分两部分;一般来讲,电源的功率电路部分包括输入电容(Cin)、输出电容(COUT)、输出电感(L)、场效应管(Ql/Q2)之间的连线用粗线走线(见图3所示);而控制电路部分包括PWM芯片,旁路电容,自举电路,反馈电阻之间的连线用细线走线。



图3 为图2中功率电路部份的电流和电压波形

  图3显示功率电路部分的电流和电压波形图。可以看到高频率交流电流会周旋在由场效应管和输入电容所组成的回路中。所以此回路中元器件之间的PCB走线要短而且要宽。此回路截面积要越小越好。小回路面积将大大地减小EMI噪声并产生一个比较安静的功率地。安静的功率地会使场效应管的栅极驱动电压波形非常干净。CIN可用大容量电解电容和小容量瓷片电容并联,并要靠近场效应管。如果高频交流电流的回路面积很大,就会在回路的内部和外部产生很大的电磁千扰(EMl)。如果同样的高频交流电流的回路面积设计得非常小,回路内部和外部的电磁场互相抵销,整个电路会变得非常安静。

  高端场效应管(Q2)的源极,低端场效应管(Q1)的漏极和输出电感(L)之间的连接点应该是一整块铜片焊盘。由于这连接点上的电压是高频和交流,Q1和Q2和L要靠得非常近。虽然输出电感和输出电容之间的走线没有高频交流电流,但宽的走线可以降低直流阻抗的损耗提高电源的效率。

  控制线路应放置在功率电路的边上.控制电路绝对不能放在高频交流回路的中间。旁路电容要尽量靠近芯片的Vcc和地。芯片的场效应管驱动输出不要离开场效应管太远。反馈分压电阻最好也放置在芯片附近。

结语

  通过对低价简易PWM控制芯片SC2618在开关电源上的应用与PCB板排版的分折,可以看到当今新一代消费类电子产品电源开发与应用可以大为简化,非但省力省物力而且大大提高了糸统的可靠性,此类直流开关电源具有较高的性能价格比。

关键字:电容  电压  电感  电流 编辑: 引用地址:机顶盒与液晶电视用的低价简易开关电源设计

上一篇:便携式播放器的电源方案
下一篇:基于CAN的电源控制系统设计

推荐阅读最新更新时间:2023-10-18 14:33

优化稳压器的输出电压精度
     虽然输出电压不断下降而稳压要求正变得越来越高,但是您的任务可能并非像其表面上看起来那么困难。即使必须要使用1%或更大的容差电阻来进行设计,但您仍然可以得到非常精确的输出电压。   图1显示了一款典型的电源调节电路。输出被分流降压,并与参考电压进行比较。差异被放大,并用于驱动调节环路。乍一看,您可能会认为这一方案仅限于两倍电阻容差精度。幸运的是,实际并非如此;精度还是输出电压与参考电压之比的强函数。 图1.输出精度是分压器比、基准精度和误差放大器补偿的函数   三种不同的情况可以非常容易地说明这一比率。第一种情况是假设一点分压也没有,换句话就是说输出电压等于参考电压。很明显,这种情况下没有电阻分压误差。第二
[电源管理]
优化稳压器的输出<font color='red'>电压</font>精度
基于CAN总线EPB驻车电流采集节点系统电路设计
  电子驻车制动系统(EPB)指将行车过程中的临时性制动和停车后的长时性制动功能整合在一起,并且由电子控制方式实现停车制动的技术。为了能够获取各车辆已施加的理论驻车压力,并监控各车辆一体化执行机构的工作状态,防止驻车电机长时间工作在大电流状态,防止驻车电机过热烧毀,EPB一般配有驻车车电流采集节点,并通过CAN总线将驻车电流发送给中央控制节点(ECU)。文中主要介绍了基于AD574A的驻车电流采集节点的接口设置。   1 系统硬件设计   驻车电流采集节点的硬件电路设计包括CAN总线通讯电路设计与车速采集电路设计两部分,如图1所示。   1)CAN总线通讯电路设计   CAN总线通讯电路设计时,CAN控
[单片机]
基于CAN总线EPB驻车<font color='red'>电流</font>采集节点系统电路设计
适合小型风力发电系统电流电压测量的微型化隔离放大器
介绍 作为最具前景的替代能源之一,风力发电不受金融危机和经济衰退的影响,预估会在未来5年以每年22.4%的速度持续增长 。大型风力发电场目前也已经开始扩展到离岸的深水区域,例如爱尔兰海的25MW Arklow海上风力发电场,以及可以提供420MW发电容量的美国第一个离岸风力发电场风角(Cape Wind)。 除了关注预计会在尺寸以及安装数量持续增长大型数MW风力涡轮机外,大部分功率逆变器制造商面对的市场商机大多在 100kW的小型风力涡轮机市场。虽然相对于太阳能发电,风力功率逆变器的市场较小,但却正在大幅增长。许多新的进展正在影响这个领域,包括风能建筑(Building Integrated Wind Energy, BIWE
[电源管理]
适合小型风力发电系统<font color='red'>电流</font>和<font color='red'>电压</font>测量的微型化隔离放大器
用灯丝变压器调节线路电压
问题:在20世纪60年代,我无法在我居住的家中使用Heathkit示波器,因为我的实验室距离到达房子的电力线输入端太远,并且通往房子的线路电压降很大。根据每天的时间不同,屏幕可能会缩小到大约正常显示器尺寸的一半。我检查了线路电压,电压下降到只有100V左右。我没有资金购买解决这个问题的高功率(瓦特数)Variac(自耦合变压器)。 解决方案:我有几台额定电流为3A或4A的12.6V灯丝变压器。我在实验室里简单地连接其中一台灯丝变压器,初级绕组跨接在交流线路上(图1)。然后,连接次级绕组,其一端连接到交流线路,而另一端则提供新的升压交流线路。由于变压器具有一个中心抽头,所以我能够以6.3V的步长调节线路电压。这种方法的精妙之处在于变
[电源管理]
用灯丝变压器调节线路<font color='red'>电压</font>
基美电子推出KPS-MCC C0G高温200℃大电容解决方案
全球领先的电子元件供应商——基美电子(KEMET),宣布推出适用于恶劣环境应用的KPS-MCC C0G高温200℃大电容解决方案。这些电容器通过结合基美电子稳定的专利C0G/NPO贱金属电极(BME)电介质系统与耐用的引线框架技术而开发,非常适合于诸如井下石油勘探、汽车和混合电动汽车(HEV)、国防和航空航天等高温、高压和高振动应用。 基美电子C0G BME电介质系统设计用于在高达200℃的工作温度下提供高可靠性,同时保持在高频率下具有高绝缘电阻、极低的ESR和极高的纹波电流能力。此外,该系列具有优异的稳定性,在直流电压下无电容变化,随温度改变仅有±30ppm/℃电容变化。用于引线连接的高熔点(HMP)焊料可实现多个芯片并联堆
[嵌入式]
人与计算机的对话--互电容式触控技术
自从计算机问世以来,人们就一直在思考如何以更有效的方式实现人与计算机的对话,也即所谓的人机交互技术。容式触摸技术,特别是互电容技术由于具有直接、高效、准确、流畅、时尚等特点,极大程度提高了人和计算机对话的效率和便利性,未来必将替代鼠标和键盘,成为未来消费的主流。 投射电容屏触摸检测原理 投射电容屏可分为自电容屏和互电容屏两种类型。在玻璃表面用ITO(一种透明的导电材料)制作成横向与纵向电极阵列,这些横向和纵向的电极分别与地构成电容,这个电容就是通常所说的自电容,也就是电极对地的电容。当手指触摸到电容屏时,手指的电容将会叠加到屏体电容上,使屏体电容量增加。 在触摸检测时,自电容屏依次分别检测
[工业控制]
人与计算机的对话--互<font color='red'>电容</font>式触控技术
数显电容高低调节器的原理与应用
1 引言 许多大型装备制造企业和造船行业普遍使用火焰切割机自动套料切割钢板,而电容高低调节器是切割机中必不可少的配套部件。该设备的主要功能是保证切割机的割炬头与被切割工件始终保持最佳切割距离,从而消除由于被切割工件的不平度变化而引起的加工精度误差,进而保证切割质量,同时也是自动切割必不可少的附属设备,切割机割矩和电容探头示意图如图1所示。由于切割机在工作过程中不能准确探知切割割炬与钢板的距离,这就必然影响钢板的切割质量。为了保证切割过程中割缝宽度均均,提高切割精度,采用一种2位数码管显示割炬与被切钢板的距离,这就可以在切割过程中实时监控割炬与钢板的距离,从而有效保证钢板的切割质量。
[模拟电子]
ROHM首次推出硅电容器“BTD1RVFL系列” 表面贴装型的量产产品,实现0402业界超小尺寸
ROHM首次推出硅电容器“BTD1RVFL系列” 表面贴装型的量产产品,实现0402业界超小尺寸,助力智能手机等应用进一步节省空间! ※截至2023年9月14日 ROHM调查 全球知名半导体制造商ROHM(总部位于日本京都市)新开发出在智能手机和可穿戴设备等领域应用日益广泛的硅电容器。利用ROHM多年来积累的硅半导体加工技术,新产品同时实现了更小的尺寸和更高的性能。 随着智能手机等应用的功能增加和性能提升,业界对于支持更高安装密度的小型元器件的需求日益高涨。硅电容器采用薄膜半导体技术,与多层陶瓷电容器(MLCC)相比,具有厚度更薄且电容量更大的特点。由于其稳定的温度特性和出色的可靠性,这种产品的应用越来越广泛。
[电源管理]
ROHM首次推出硅<font color='red'>电容</font>器“BTD1RVFL系列”  表面贴装型的量产产品,实现0402业界超小尺寸
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved