随着半导体行业遵循摩尔定律不断发展,处理器对电源的需求也正以惊人的速率在增长。在电源管理至关重要的电池供电应用中,处理器会根据时钟速率的增加或减少,调节其相应的内核工作电压,从而在需要高速处理的时候全功率供电,在处理器空闲的时候避免浪费剩余功率。但是,为处理器寻找有控制输出电压功能的开关稳压器集成电路(IC)是很困难的,而且价格通常比普通的开关稳压器高很多。图1所示的电路是为嵌入式处理器供电的经济有效的解决方案,该方案采用了简单的降压式开关稳压器,处理器BF531通过低成本数字电位器AD5258,设置降压式开关稳压器ADP3051的输出电压。
图1 嵌入式处理器BF531的供电电路
在该电路中,启动VDDINT引脚电压=(5kΩ+10kΩ)×0.8V/10kΩ= 1.2V,AD5258从5kΩ开始;最小的VDDINT引脚电压=0.8V;最大的VDDINT引脚电压=(5kΩ+10kΩ)× 0.8V/10kΩ+10%过冲裕量=1.2V +10%过冲裕量=1.32V。
ADP3051是一种能提供500mA电流、输出电压低至0.8V的电流模式、脉宽调制(PWM)降压式开关稳压器。其输出电压用一个电阻分压器设置,该分压器的高端接到输出端,低端接到地,中心点接到反馈引脚。当调节输出电压时,ADP3051将反馈引脚保持在恒定的0.8V参考电压,因此将输出电压设置成分压比的倒数与参考电压的乘积。在本设计中,分压器的低端电阻是10kΩ,高端由数字电位器AD5258设置。AD5258有64个分点,用I2C接口改变其滑动端设置。ADSP-BF531 Blackfin嵌入式处理器根据其功耗的需求,通过I2C接口调节AD5258的滑动端设置。这样通过改变AD5258的滑动端设置来改变ADP3051输出电压,允许Blackfin处理器按照要求调节其内核电压。
满足嵌入式处理器的多种要求是本设计中最困难的部分。ADSP-BF531要求在具有50mV分辨率的0.8~1.2V电压范围内,使内核电压的精度达到25mV之内。还有,该嵌入式处理器必须在1.2V启动以初始化其时钟。而且,还要有硬件保护防止输出电压超过1.2V,防止软件错误发生。此外,制造商和市场都要求将成本和印制电路板(PCB)面积比现有解决方案减小一半。
数字电位器虽然能精确地设置其内置电阻器比率,但是通常其绝对电阻值的误差很大。这里AD5258不用于设置电阻器的比率,而是将其内置电阻器与外部电阻器相连一起来设置输出电压。这通常这会导致系统精度降低,但使用AD5258的非易失性存储器存储其绝对电阻值,可以解决这个问题。ADSP-BF531通过I2C端口读取这个有允许误差的电阻值,并用简单的算法调节ADP3051输出电压以提高精度。图2是通过示波器观察到的ADP3051的输出电压波形。该图显示了输入电压Vin为3V,输出电压Vout从0.8V增加到1.2V,输出电流Iout为500mA,过冲电压大约为60mV。数字电位器为?? 5kΩ,而且低端的反馈电阻器是10kΩ。
图2 ADP3051的输出电压波形
AD5258非易失性存储器的另一优点是能够以任意电阻比值启动AD5258。AD5258的校正设置已存入非易失性存储器中,能够在1.2V启动ADP3051的输出电压,以便初始化时钟。使用AD5258和外部电阻器提供硬件保护,防止输出电压超过1.2V。如果AD5258设置为0电阻值,那么输出电压应为0.8V×(0Ω+10kΩ)/10kΩ= 0.8V;如果将它设置为最大阻值5kΩ,那么输出电压应为0.8V×(5kΩ+10kΩ)/10kΩ=1.2V。如果该嵌入式处理器通过I2C端口控制AD5258,使内核电压从0.8V增加到1.2V,那么输出电压会在40μs内保持单调性增加。
ADP3051具有低电阻和同步整流的开关稳压器的特点,所以能在整个输出电压范围内提供高效率,也减少外围元件数量,从而使其成为满足低功耗ADSP-BF531处理器电源要求的理想解决方案。另外,因为ADP3051是集成的开关稳压器,所以该解决方案大大降低了成本并且减小了PCB面积。
上一篇:OLED的电源管理
下一篇:辅助电源对以太网供电(PoE)应用的扩展
推荐阅读最新更新时间:2023-10-18 14:33
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况