一、前言
开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。三端离线式脉宽调制单片开关集成电路TOP(Threeterminaloffline)将PWM控制器与功率开关MOSFET合二为一封装在一起,已成为开关电源IC发展的主流。采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。
二、TOP开关结构及工作原理
1、结构
TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO220或8脚DIP封装。少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。三个引出端分别是漏极端D、源极端S和控制端C。其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C控
2、工作原理
TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA与CA构成截止频率为7kHz的低通滤波器。主要特点是:
(1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击;
(2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断;
(3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制;
(4)电压型控制方式与逐周期峰值电流限制。
下面简要叙述一下:
(1)控制电压源
控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流Ic则能调节占空比。控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,具有延迟控制作用;另一种是并联调节,用于分离误差信号与控制电路的高压电流源。刚起动电路时由D-C极之间的高压电流源提供控制端电流Ic,以便给控制电路供电并对Ct充电。
(2)带隙基准电压源
带隙基准电压源除向内部提供各种基准电压之外,还产生一个具有温度补偿并可调整的电流源,以保证精确设定振荡器频率和门极驱动电流。
(3)振荡器
内部振荡电容是在设定的上、下阈值UH、UL之间周期性地线性充放电,以产生脉宽调制器所需要的锯齿波(SAW),与此同时还产生最大占空比信号(Dmax)和时钟信号(CLOCK)。为减小电磁干扰,提高电源效率,振荡频率(即开关频率)设计为100kHz,脉冲波形的占空比设定为D。
(4)放大器
误差放大器的增益由控制端的动态阻抗Zc来设定。Zc的变化范围是10Ω~20Ω,典型值为15Ω。误差放大器将反馈电压UF与5.7V基准电压进行比较后,输出误差电流Ir,在RE上形成误差电压UR。
(5)脉宽调制器(PWM)
脉宽调制器是一个电压反馈式控制电路,它具有两层含义。第一、改变控制端电流Ic的大小,即可调节占空比D,实现脉宽调制。第二、误差电压UR经由RA、CA组成截止频率为7kHz的低通滤波器,滤掉开关噪声电压之后,加至PWM比较器的同相输入端,再与锯齿波电压UJ进行比较,产生脉宽调制信号UB。
(6)门驱动级和输出级
门驱动级(F)用于驱动功率开关管(MOSFET),使之按一定速率导通,从而将共模电磁干扰减至最小。漏源导通电阻与产品型号和芯片结温有关。MOSFET管的漏源击穿电压U(bo)ds≥700V。
(7)过流保护电路
过流比较器的反相输入端接阈值电压ULIMIT,同相输入端接MOSFET管的漏极。此外,芯片还具有初始输入电流限制功能。刚通电时可将整流后的直流限制在0.6A或0.75A。
(8)过热保护电路
当芯片结温TJ>135℃时,过热保护电路就输出高电平,将触发器Ⅱ置位,Q=1,,关断输出级。此时进入滞后调节模式,Uc端波形也变成幅度为4.7V~5.7V的锯齿波。若要重新起动电路,需断电后再接通电源开关;或者将控制端电压降至3.3V以下,达到Uc(reset)值,再利用上电复位电路将触发器Ⅱ置零,使MOSFET恢复正常工作。
(9)关断/自起动电路
一旦调节失控,关断/自动重起动电路立即使芯片在5%占空比下工作,同时切断从外部流入C端的电流,Uc再次进入滞后调节模式。倘若故障己排除,Uc又回到并联调节模式,自动重新起动电源恢复正常工作。自动重起动的频率为1.2Hz。
(10)高压电流源
在起动或滞后调节模式下,高压电流源经过电子开关S1给内部电
当TOP开关起动操作时,在控制端环路振荡电路的控制下,漏极端有电流流入芯片,提供开环输入。该输入通过旁路调整器、误差放大器时,由控制端进行闭环调整,改变Ir,经由PWM控制MOSFET的输出占空比,最后达到动态平衡。
三、TOP开关的典型应用
1、12V/30W小功率开关电源
12V/30W小功率开关电源原理图如图2所示。该电源特性是:简单,直接可与220V交流电源连接,经桥式整流电容滤波后产生300V直流高电压起动开关电源工作。并且重量轻、体积小,接线简单外围元件少。
该电路特点是利用三极管Q1,二极管D8及电阻R5、R6组成过低压保护电路,当输入电压降低到一定程度时,Q1导通,控制端C电位降低,TOP开关关闭,开关电源没有输出。
(1)输入电路
电网交流220V输入电压经桥式整流、电容滤波后产生300V直流高压起动开关电源工作。
(2)电源变换器部分
在该电路中,T2为高频变压器,其中:N1为初级绕组(35T);N2为反馈绕组(15T);N3为次级隔离输出绕组(7T)。
开关电源工作后,反馈绕组N2经整流、滤波、限流后送至TOP开关控制极C,以调整TOP开关内部PWM占空比。当因某种原因如负载变轻引起输出电压升高时,N2电压将升高,即流入TOP开关控制端C的电流增加。在振荡电路的控制下,漏极端D有电流流入芯片,提供开环输入,该输入通过旁路调整器、误差放大器,由控制端进行闭环调整,经由PWM控制MOSFET的输出占空比,使其占空比线性减小,从而使输出电压下降,最后达到动态平衡,保持输出稳定。电路中并接于初级绕组N1两端的瞬态电压抑制二极管D5、电容C4及快速二极管D6组成钳位削峰电路。钳制电感放电脉冲的最高电位,减少漏感抗引起的漏极端电压畸变。在实际绕制高频电源变压器时,为了减小漏感的影响,可采用初级与次级相互交叉的绕制方法。同时,采用自我屏蔽作用较为良好的罐形磁芯,将线圈都用磁芯封在里边。
(3)反馈控制回路
电容C6决定软起动恢复时间,C6、R5、R4、C5、D7决定控制回路的零点。R4阻值过小,限流线性差,容易导致TOP开关损坏;过大则调整线性差。在实验中取值为10kΩ
(4)输出回路
N3、D10、C8、D11构成输出回路。肖特基势垒整流二极管D10对高频变压器次级的高频方波电压进行整流,经低ESR值的电解电容滤波及双向瞬态电压抑制二极管D11削峰稳压后,提供给负载电路。R7既可改善电源本身的输出阻抗,又能小幅度地调整输出电压的范围,同时又可在电源空载时为电容C8提供放电回路。R7取值为430Ω。
2、12.5V/25W精密开关电源
12.5V/25W精密开关电源原理图如图3所示。由TOP204构成隔离式+12.5V、2A(25W)开关电源电路,该电源的特性为:当交流输入电压U从85V变化到265V时,电压调整率为±0.2%;当负载电流从10%(0.2A)变化到100%(2A)时,负载调整率也达±0.2%,可与线性集成稳压电源相媲美。该电路的主要特点是利用一片TL431(IC3)与光电耦合器(IC2)构成外部误差放大器。它再与片内误差放大器配合使用,对控制电流进行精细调整,从而大大提高了稳压性能。
四、结束语
由于TOP芯片内部完全集成了SMPS的全部功能,所以利用它设计出的开关电源周期短,成本低,对于小功率电源,简单,体积小,重量轻。随着TOP开关系列的不断发展与改进,其在开关电源及其它应用领域中必将有着更加灿烂的前景。
上一篇:一种智能高频开关电源监控模块的设计
下一篇:可饱和电感在开关电源中的应用
推荐阅读最新更新时间:2023-10-18 14:38
- 热门资源推荐
- 热门放大器推荐
- 【得捷电子Follow me第2期】+交作业——源代码
- 【得捷电子Follow me第2期】四个任务的程序源码
- 【得捷电子Follow me第2期】任务提交代码
- 【得捷电子Follow me第2期】 任务1:控制屏幕显示中文
An error occurred.
Sorry, the page you are looking for is currently unavailable.
Please try again later.
If you are the system administrator of this resource then you should check the error log for details.
Faithfully yours, OpenResty.
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 【有奖直播】 聚焦语音识别核心技术,走进Microchip Timberwolf™音频处理器研讨会
- 4月25日上午10:00-11:30 ADI与您相约 TOF (Time Of Flight) 技术介绍及产品应用 有奖直播
- 直播已结束|TI 嵌入式直播周带您直击工业应用
- TI首届低功耗设计大赛之玩转MSP430 FRAM MCU
- 如何用3个关键步骤,来确保下一代设计安全性,深入解读嵌入式设备DeepCover加密控制器,看视频答题赢好礼!
- 轻松注册世健eSHOP,百份奖品大派送!惊喜不断,好礼无限!ipad air2等你拿!
- 希望一月 爱上EEWORLD——论坛推广月(恩智浦全程赞助)
- 邀请好友体验WEBENCH,礼品丰厚你有他也有!