摘要:介绍了一种基于补偿原理的共模干扰抑制技术,通过抑制电源辐射来减少变换器的共模干扰。这种方法被推广应用于多种功率变换器拓扑,理论和实验结果都表明该技术有效减少了电路的共模干扰。
引言
由于mosfet及igbt和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以emi问题是目前电力电子界关注的主要问题之一。
传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。
1 补偿原理
共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的dv/dt与杂散参数间相互作用而产生的高频振荡引起。如图1所示。共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的dv/dt是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。图2给出了这种新型共模噪声抑制电路所依据的本质概念。开关器件的dv/dt通过外壳和散热片之间的寄生电容对地形成噪声电流。抑制电路通过检测器件的dv/dt,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50ω的阻抗平衡网络(lisn)电阻(接测量接收机的bnc端口)上的共模噪声电压被大大减弱了。
2 基于补偿原理的共模干扰抑制技术在开关电源中的应用
本文以单端反激电路为例,介绍基于补偿原理的共模干扰抑制技术在功率变换器中的应用。图3给出了典型单端反激变换器的拓扑结构,并加入了新的共模噪声抑制电路。如图3所示,从开关器件过来的dv/dt所导致的寄生电流ipara注入接地层,附加抑制电路产生的反相噪声补偿电流icomp也同时注入接地层。理想的状况就是这两股电流相加为零,从而大大减少了流向lisn电阻的共模电流。利用现有电路中的电源变压器磁芯,在原绕组结构上再增加一个附加绕组nc。由于该绕组只需流过由补偿电容ccomp产生的反向噪声电流,所以它的线径相对原副方的np及ns绕组显得很小(由实际装置的设计考虑决定)。附加电路中的补偿电容ccomp主要是用来产生和由寄生电容cpara引起的寄生噪声电流反相的补偿电流。ccomp的大小由cpara和绕组匝比np∶nc决定。如果np∶nc=1,则ccomp的电容值取得和cpara相当;若np∶nc≠1,则ccomp的取值要满足icomp=cpara·dv/dt。
此外,还可以通过改造诸如buck,half-bridge等dc/dc变换器中的电感或变压器,从而形成无源补偿电路,实现噪声的抑制,如图4,图5所示。
3 实验及结果
实验采用了一台5kw/50hz艇用逆变器的单端反激辅助电源作为实验平台。交流调压器的输出经过lisn送入整流桥,整流后的直流输出作为反激电路的输入。多点测得开关管集电极对实验地(机壳)的寄生电容大约为80pf,鉴于实验室现有的电容元件,取用了一个100pf,耐压1kv的瓷片电容作为补偿电容。一接地铝板作为实验桌面,lisn及待测反激电源的外壳均良好接地。图6是补偿绕组电压和原方绕组电压波形。补偿绕组精确的反相重现了原方绕组的波形。图7是流过补偿电容的电流和开关管散热器对地寄生电流的波形。从图7可以看出,补偿电流和寄生电流波形相位相差180°,在一些波形尖刺方面也较好地吻合。但是,由于开关管的金属外壳为集电极且与散热器相通,散热器形状的不规则导致了开关管寄生电容测量的不确定性。由图7可见,补偿电流的幅值大于实际寄生电流,说明补偿电容的取值与寄生电容的逼近程度不够好,取值略偏大。图8给出了补偿电路加入前后,流入lisn接地线的共模电流波形比较。经过共模抑制电路的电流平衡后,共模电流的尖峰得到了很好的抑制,实验数据表明,最大的抑制量大约有14ma左右。
图9是用agilente4402b频谱分析仪测得的共模电流的频谱波形。可见100khz到2mhz的频率范围内的cm噪声得到了较好的抑制。但是,在3mhz左右出现了一个幅值突起,之后的高频段也未见明显的衰减,这说明在高频条件下,电路的分布参数成了噪声耦合主要的影响因素,补偿电路带来的高频振荡也部分增加了共模emi噪声的高频成份。但从滤波器设计的角度来看,这并不太多影响由于降低了低次谐波噪声而节省的设备开支。若是能较精确地调节补偿电容,使其尽可能接近寄生电容cpara的值,那么抑制的效果会在此基础上有所改善。
4 此技术的局限性
图10中的(a),(b),(c),(d)给出了噪声抑制电路无法起到正常效用时的电压、电流的波形仿真情况。这里主要包含了两种情况:
上一篇:基于MOSFET控制的PWM型直流可调电源的研制
下一篇:RIGOL开关电源测试方案
推荐阅读最新更新时间:2023-10-18 14:40
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况