摘要:构建了Buck变换器参数辨识的方法。通过检测电感电流和输出电压的波形信号,可辨识出电路的滤波电感、滤波电容及其等效串联电阻,并可应用于参数在线辨识,故障趋势判断和预知维护。最后通过实验验证了这一方法的有效性。 关键词:Buck变换器;参数辨识;方法 引言 随着电力电子技术的日益发展,电力电子变换器在工业、航空、信息产业等领域得到了越来越广泛的应用。Buck变换器是一种结构比较简单,应用十分广泛的DC/DC降压变换器,也越来越多地应用在许多大功率电压变换场合。因此,对其可靠性和可维护性的要求也越来越高。 元器件的软故障,如电容、变压器、电感、开关器件特性劣化等参数性故障,会降低变换器的工作性能和安全性,影响输出指标,严重的会引发开关器件短路或开路故障,从而造成严重的经济损失。因此,有必要研究变换器的参数辨识方法以实现参数性故障诊断,从而为故障趋势判断和预知维护创造条件。 本文通过建立Buck变换器的模型,并且在这一模型的基础上,通过最小二乘算法获得了的变换器参数辨识的方法。这种方法适用于CCM和DCM工作模式的变换器的参数辨识,能够推广到其他开关变换器,并且能够被应用于在线参数辨识和故障自动诊断系统。通过对变换器的滤波电感、滤波电容及其等效串联电阻的参数辨识的实验,验证了这一方法的有效性和准确性。 1 Buck变换器的模型构建 Buck变换器电路如图1所示。 在Buck变换器建模中,开关器件被视作理想器件。电容的等效串联电阻(ESR)是衡量电容是否正常的一个很重要的参数,同时它对电路的性能有较大的影响,特别是对输出电压的纹波影响较大,故在建模过程中予以考虑,并且在参数辨识过程中也作为一个参数来进行辨识。而电感的ESR由于其影响较小,因此建模中不予考虑。变换器的等效电路图如图2所示。 在CCM工作模式下,变换器会在两种正常的工作状态下运行,即s1=1,s2=0和s1=0,s2=1。在DCM工作模式下,变换器会在三种正常的工作状态下运行,即s1=1,s2=0、s1=0,s2=1和s1=0,s2=0。结合各种状态下变换器的微分方程组,可以归纳推导出变换器的模型为 s1及s2不能同时为1。 2 Buck变换器的参数辨识 2.1 Buck电路参数辨识的基本原理 对式(1)作离散化处理,可以得到 采用递推最小二乘法作参数辨识,t可以作为第t次观测数目,各矩阵定义如下: 于是,通过最小二乘法,可以得出一组递推算法: 式中:n取值为1,2。 将式(2)写成参数表达形式 分析中我们发现,式(2)右边第一和第二项之间有相关性。当s1+s2的值为1,即s1及s2之中至少有一个开关是导通时,第一项和第二项的状态项是相同的,当s1及s2的值为0,即s1及s2都是关断时,第二项的值始终为零,因此,理论上虽然并不是相对应的收敛于a11,h11,a21,h21,a12,h12,a22,h22,但却应该分别收敛于 由所得到的过程参数估计值可以计算出需要辨识的参数值如下: 2.2 Buck电路参数辨识实验 实验系统的方框图如图3所示,通过PCI9810高速数据采集卡,将经过信号调理的Buck电路的电感电流、输出电压和控制脉冲信号采集进入PC中,在PC中进行数据处理和参数辨识的工作。 实验环境如下所述。输入电压值在30V左右,开关频率维持在20kHz,采样频率是3MHz,采集点数是400点,电容(C)值是302μF,电感(L)值是437μH,电容ESR是0.198Ω,负载电阻值分别取2.1,6.4,8.5,12.2,14.7,21.1,33.5,48.1Ω,占空比的范围是0.1到0.9,每隔约0.1取一个值,电路运行在CCM或DCM的工作模式下,在每一组实验环境数据下做5次实验,总共做了200次实验。图4、图5分别列出CCM和DCM的信号波形图。其中,图4(a)的实验条件为占空比0.7,负载电阻值为12.2Ω,电路工作在CCM模式,图4(b)所示的波形是输出电压纹波放大图;图5(a)的实验条件为占空比0.32,负载电阻值为48.1Ω,电路工作在DCM模式,图5(b)所示的波形是输出电压纹波放大图。 各辨识参数的误差统计如表1所列。由表1中可以看出,辨识误差大部分落在6%以内,因此,这一辨识方法还是相当有效的,可以比较准确地估计出参数值。 表1 误差统计表 L C Rc R 0~1% 20.5% 8.5% 9% 8% 1%~2% 24.5% 9.5% 16.5% 17.5% 2%~3% 21% 18.5% 18% 18.5% 3%~4% 14.5% 21% 15.5% 20.5% 4%~5% 10.5% 26.5% 22% 18.5% 5%~6% 9% 16% 19% 14% 6%~6.17% 0 0 0 3% 3 结语 本文对Buck电路的参数进行了辨识。对于运行在两种工作模式下的Buck电路,这种方法都是适用的。该方法准确性较高并可以实现参数的在线辨识,为Buck电路的参数性故障诊断提供了一种可行的方法。它可集成于电力电子监控及故障诊断系统,从而实现系统参数的在线辨识和故障的预知诊断。
编辑:冀凯 引用地址:Buck变换器参数辨识的研究
小广播
热门活动
换一批
更多
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
最新电源管理文章
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC
更多精选电路图
更多热门文章
更多每日新闻
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知
更多往期活动
11月15日历史上的今天
- 大联大品佳集团推出基于Microchip、onsemi和ams OSRAM产品的LIN通讯贯穿式尾灯方案
- 美政府强烈拒绝英特尔使用四川厂区芯片?外交部回应
- 罗德与施瓦茨携手泰尔终端实验室完成首个5G VoNR语音测试
- 打破合资垄断,国产四大“混动”技术崛起,谁最符合国人的需求?
- 恩智浦、地平线、映驰科技合作推出DCU3.0行泊一体域控制器
- 安捷伦E8363A网络分析仪维修开机异常故障案例
- 是德网络分析仪维修案例--是德N5244A开机报错故障
- 拥抱异构集成的新机遇,芯和半导体2021用户大会成功召开
- 频谱分析仪维修--N9030A开机报错故障案例
- 是德频谱分析仪N9000A不开机自校准报错维修案例
厂商技术中心