用于PFC的交错式升压转换器的优势

最新更新时间:2007-10-22来源: EDN China关键字:校正  纹波  电感  输出 手机看文章 扫描二维码
随时随地手机看文章
采用交错式升压级可以降低功率因数校正预调节器功率转换器输入及输出纹波电流,从而缩小升压电感器尺寸并降低输出电容的电气应力。

用于 PFC(功率因数校正)预调节器的最常见的拓扑结构为升压转换器,该升压转换器有一个持续的输入电流,您可以采用平均电流模式控制技术进行操作,使输入电流可以跟踪线电压变化。图 1 显示了一款传统的单级升压转换器。为了更方便地解释电路工作情况,本文所指的均为直流输入。ΔIL1 表示转换器输入端电感纹波电流变量,同时需要进行滤波处理使其符合 EMI 规范。I1 表示二极管输出电流,该电流为非持续电流,同时需要输出电容 (COUT) 对其进行滤波处理。在该拓扑结构中,输出电容纹波电流 ICOUT 较强,这也是 I1 与 IOUT(直流输出电流)之间的区别所在。

交错式升压转换器

图 2 为双级 (two-phase) 交错式升压转换器的工作原理图,该双级交错式转换器由两个在相位差为 180° 时运行的升压转换器组成。输入电流为两个电感电流(IL1 及 IL2)之和。由于电感纹波电流的相位相反,这些电流相互抵消,并降低由升压电感产生的电感纹波电流。当占空比为 50% 时,输入电感纹波电流消除效果最佳。输出电容电流为两个二极管电流 (I1+I2) 之和减去直流输出电流的差,该直流输出电流减小了输出电容纹波电流 IOUT,该输出电容纹波电流为占空比的一个函数。随着占空比接近 0、50% 和 100% 时,两个二极管电流之和就越来越接近直流电的值。这种情况下,输出电容就不得不只对电感纹波电流进行滤波处理。

输入纹波电流的降低

下面的方程式和图 3 显示了输入纹波电流与电感纹波电流的比率 K(D) 如何随着占空比的变化而变化。在选择交错式升压转换器的电感器时,牢记该变化是非常重要的。

图 4 显示了单级升压转换器的额定输出电容 rms 电流,用 ICOUT_rms_single (D) 表示,同时还显示了双级交错式升压转换器的额定 rms 电流,用 ICOUT_rms (D) 表示,其为占空比的一个函数。图 4 则表明双级交错式升压转换器的输出电容纹波电流大约为传统单级升压转化器输出电容纹波电流的二分之一,从而减小了输出滤波电容的电气应力。

电感器尺寸的估计

为了了解交错式 PFC 预调节器缩小的升压电感器尺寸所带来的好处,我对一款单级和一款两级升压预调节器(图 5)进行了数学对比。该设计中需要一个大约为 350W 的最大输出功率,用 POUT 表示;一个 85V rms 的最小线电压输入,用 VINMIN 表示;一个 265V rms 的最大线电压输入以及一个转换效率大约为 95% 的转换器。电感器的转换频率为 100 kHz,用 fS 表示。电感器的输入纹波电流要求为 30%,同时,两种拓扑结构电感器的最高电感纹波电流出现在最小输入及最大输入电流中。

我选取了数个电感器,以应用于基于纹波电流极值的两种设计。就用于一般输入端的转换器而言,当线电压为峰值,并且交流输入为最小值时,该点便会出现。当占空比为 0.67 时,转换器开始工作。图 6 显示了占空比是如何随着线电压 VIN(t) 的变化而变化的。函数 D1(t) 表明了占空比是如何随 265V rms 最大输入而变化的。当转换器在最大输入(265V rms)条件下工作时,并且输入电压为输出电压的二分之一时,就会出现最大电感纹波电流。随着线电压值接近输出电压值时,占空比随之减小,电感纹波电流也随之减弱。

在转换器输入端,单级 PFC 预调节器中的电感纹波电流较为明显。用于一般输入端的单级 PFC 电感大约为 450 μH。得出该计算结果的基础是,当输入端为 85V rms,最小占空比为 0.67 时,电感纹波电流为最强。

和传统预调节器一样,双路交错式电感器拥有相同的输入电流纹波要求。在一个交错式升压级中,电感电流的变量大约为 3.4A。最小 rms 输入电压的可变最小占空比需要一个大约为 245 μH 的电感。在相同的功率级要求条件下,该电感大致相当于一个单级 PFC 预调节器电感的二分之一。

试验结果

为了对 L1、L2 和输入电流进行计算,我对一款使用 200-μH 电感的双路交错式升压转换器进行了估算。当线电压为峰值时以低压输入,转换器开始工作时便会出现电感纹波电流极值。图 7 中的示波器图显示了输入为 85V rms 时 L1 和 L2 的电感电流。CH1 表示经过整流之后的线电压,CH2 表示 L1 电感电流,CH3 表示 L2 电感电流,CH4 则表示输入电流。电流转换比大约为 4A/段 (division)。

图 8a 和图 8b 显示了在最大负载时输入线电压和电感纹波电流,其示波器图的通道与图 7 中所示相同。这些波形清楚地表明了通道 4 的输入电流波形。这种两级交错式 PFC 的设计采用了一个 220-μF 的输出电容器。在满负载状态时,对于一款单级 350W 的 PFC 预调节器来说,其输出电容纹波电压大约为 33.5V。对于一款两级交错式 PFC 预调节器而言,输出纹波将会比单级 PFC 预调节器的二分之一还要小。该原型预调节器的输出纹波电压在满负载状态时大约为 13V(图 9)。

要确定该原型预调节器是否符合 EN61000-3-2 电流谐波规范,就需要原型预调节器的满负载功率输入谐波。第一谐波是 60 Hz 时的 rms 输入电流。该谐波完全是在 CH61000-3-2 Class D 规范内(参见图 10)。

交错式 PFC 预调节器允许电源设计人员减少电感磁性。功率转换器输入端的电感纹波电流消除可以使设计人员减少大约一半的电感。交错式PFC 预调节器还可以减少升压电容器中的纹波电流,进而降低输出电容器的电气 过应力。在原型电路未使用滤波的情况下,该设计仍然能达到 EN61000-3-2 Class D 电流谐波规范的要求。尽管其控制电路稍显复杂,并且使用了更多的组件,但是在高功率应用中,这样的做法还是值得的。

关键字:校正  纹波  电感  输出 编辑:金海 引用地址:用于PFC的交错式升压转换器的优势

上一篇:采用9mm x 15mm表面贴封装的完整8A DC/DC 转换器
下一篇:采用3mm x 3mmDFN封装、具线性控制器的36V降压型DC/DC转换器

推荐阅读最新更新时间:2023-10-18 14:39

PLC系统模拟输入输出发展趋势及设计挑战
PLC自20世纪70年代后期进入中国后,已然经过了三十多年的长足发展。不知正在阅读文章的各位,是否还记得您参与设计的第一款PLC电路?现如今,PLC及DCS仍然在工控领域发挥着重大作用,并且正在朝着模块更小、速度更快、通道密度更高的方向发展。 以PLC机架插槽的典型I/O卡为例,目前常见的8通道模块尺寸一般为90mm×70mm×23.5mm,但在市场需求驱动下,名片大小的产品已经问世。通道密度或数量的增加不仅能提升模块功能,而且可以增加产品价格竞争力,自然大受欢迎。但是,如何降低模块尺寸?如何在满足上述需求的同时解决由此产生的自热问题?如何进行低功耗设计?这些,也都是PLC系统设计时面对的实际问题。 ADI过程控制系
[嵌入式]
VSS-MDTV-100多标准移动电视
  VSP100作为主处理器,不需额外的MCU支持基于VSP100的多标准媒体解码能力,可配合多种移动电视解调(前端芯片)方案,实现支持各种标准的移动数字电视机。 基本特征: 支持标准: T-DMB, DVB-T, CMMB, DMB-TH, T-MMB, CMB, CDMB等 彩色屏幕: 支持各类RGB接口LCD屏 内置锂电池:支持超长时间播放 音频输出:扬声器, 耳机 视频接口:电视输出 器件列表: 处理器: 多媒体处理器和应用处理器Vivace VSP100 移动电视前端子方案:Siano SMS1010等 Flash:Spansion S25FL064A等 DDR:Micron MT46V32M16等
[新品]
STM32 GPIO输出高低电平转换速率测试
最近对STM32 GPIO的输出端高低电平变化速率产生兴趣,于是用我所知道的控制GPIO的不同方法做了测试。 单片机CPU:STM32F103ZET6 软件平台:kEIL MDK 逻辑分析仪:金沙滩 LA2016 从图中看出,最快的是 GPIOA - ODR = 0x1; GPIOA - ODR = 0x0; 和 PA0 = 0x01;PA0 = 0x00; 和 GPIOA - BSRR = 0x01; GPIOA - BRR = 0x01; 转换周期是220ns,4.55Mhz 最慢的是 *PAO0 = !*PAO0 ; 和 PA0 =!PA0; 取反操作浪费不少
[单片机]
STM32 GPIO<font color='red'>输出</font>高低电平转换速率测试
整理STM32GPIO输出速率问题
GPIO 引脚输出速度有:GPIO_Speed_2MHz (10MHz, 50MHz) 官方一点的解释: GPIO口的驱动电路响应速度,不是输出信号的速度。输出信号的速度与程序有关,通过选择速度来选择不同的驱动电路,降低功耗控制噪声。 又称输出驱动电路的响应速度:(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路,通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。) 可理解为: 输出驱动电路的带宽:即一个驱动电路可以不失真地通过信号的最大频率。 (如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。失真因素?) 如果
[单片机]
PWM调光方法在LED亮度调节中的应用
  LED 是一种固态电光源, 是一种半导体照明器件,其电学特性具有很强的离散性。它具有体积小、机械强度大、功耗低、寿命长, 便于调节控制及无污染等特征,有极大发展前景的新型光源产品。LED 调光方法的实现分为两种: 模拟调光和数字调光, 其中模拟调光是通过改变LED 回路中电流大小达到调光; 数字调光又称PWM 调光, 通过PWM 波开启和关闭LED 来改变正向电流的导通时间以达到亮度调节的效果。模拟调光通过改变LED 回路中的电流来调节LED 的亮度, 缺点是在可调节的电流范围内, 可调档位受到限制;PWM 波调光可通过改变高低电平的占空比来任意改变LED 的开启时间, 从而使亮度调节的档位增多。本文拟用两种方法共同作用
[电源管理]
PWM调光方法在LED亮度调节中的应用
微控制器 PWM 如何输出更高效地驱动负载
  大多数微控制器至少有一个脉冲宽度调制 (PWM) 外设,以方波形式生成多个波形。这些 PWM 输出可用于驱动同步负载,例如机械系统中的步进电机和电源转换器的功率 MOSFET。对于这些负载,要使目标负载正常工作,PWM 波形必须精确同步,这一点非常重要。   如果 PWM 外设未经过仔细编程,它可能偶尔会在波形之间产生相位延迟,从而导致在波形边沿未正确对齐时失去同步。这些相位延迟将会降低负载的驱动效率,从而浪费功率并可能产生过多的热量。对于常见的 PWM 外设,可以启用或禁用某个 PWM,但同时会导致其他 PWM 输出发生相位延迟。   这对于小规格电池供电型物联网 (IoT) 应用而言尤其是个问题。在此类应用中,单个
[嵌入式]
微控制器 PWM 如何<font color='red'>输出</font>更高效地驱动负载
多路输出的35W机顶盒开关电源电路
多路输出的35W机顶盒开关电源电路 多路输出的35W机顶盒开关电源电路 机顶盒是互交式电视(ITV)的关键技术,利用它可提供数字广播电视、视频与音乐点播、卡拉OK、三维游戏、高速上网、在线购物、语音提示等功能强大的宽带多媒体服务。具有五路输出的35W机顶盒开关电源电路如图4所示。这五路电压分别为:UO1(+30V、100mA),UO2(+18V、550mA),UO3(+5V、2.5A),UO4(+3.3V、3A),UO5(-5V、100mA)。其中,+5V和+3.3V作为主输出,其余各路均为辅输出。当交流输入电压UI=220VAC±15%时,总输出功率达38.5W;若采用宽范围电压输入(UI=85~265VAC),总
[电源管理]
多路<font color='red'>输出</font>的35W机顶盒开关电源电路
分立元件(三极管)组成的12V降压到9V输出的电路原理图
分立元件(三极管)组成的12V降压到9V输出的电路原理图 输入9V至30V输出24V 5A的升压电源电路图
[电源管理]
分立元件(三极管)组成的12V降压到9V<font color='red'>输出</font>的电路原理图
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved