模糊控制器在中央空调系统温度控制中的应用

发布者:JoyfulLife最新更新时间:2010-10-19 来源: 微计算机信息关键字:偏差  模糊控制器  系统响应 手机看文章 扫描二维码
随时随地手机看文章

0 引言

  中央空调系统的设计是以室内空气参数为基本依据,通过对整个空调系统新风、回风的温度、湿度、送风风机运行状态、初效过滤段的压差等现场信号的采集,根据所设计的控制策略控制送风风机的变频调速、加湿器的加湿、冷、热水阀门的开度大小来达到设定的空气状态,且根据室内、外空气的状态(温度、湿度)确定系统的运行工况,在保证生产工艺的要求的前提下,使空调系统运行合理、安全、可靠、能耗低等,使控制效果达到最优。一般系统中的被控参数可设定为两个:室内温度和湿度。常规恒温恒湿中央空调系统是一个多输入、多输出的控制系统。因为回风温、湿度与室内温、湿度的变化情况有一致性,所以常把系统回风温、湿度作为被控参数,控制回路采用多个回路的PID控制。但由于空调系统传递滞后较大,且是一个干扰大、高度非线性、随机干扰因素多的系统,参数整定困难,一组整定好的参数只能在较小的范围内有较好的控制效果,当参数变化超过一定范围时,系统控制效果变差,致使普通PID控制难以满足要求。我们文章针对以上情况,结合航天科工集团某研究所光学加工楼新风系统自动控制项目,我们运用模糊控制技术,采用一种基于模糊控制规则的控制方法设计出恒温恒湿中央空调控制系统,具有超调小、调节迅速和上升时间短的特点,且具有很好的鲁棒性。

1 制冷空调系统模型

  制冷空调的实际控制对象大多可用高阶的微分方程来描述。为了分析简便,我们常用低阶模型来近似描述控制对象的动态特性,只要能满足一定的控制精度。

  在自动控制系统中一阶惯性环节定义的微分方程是一阶的,且输出响应需要一定的时间才能达到稳态值。因此中央空调系统中表冷器、电动水阀都可以近似的用一阶惯性环节来表示,而房间作为系统的控制对象,根据能量守恒定律,可建立控制对象房间的微分方程,它是一个二阶系统,但在工业控制中我们往往用纯迟延的一阶模型来代替,仿真结果表明,用带纯迟延的一阶模型来近似描述控制对象完全可以满足实际应用的要求。温度检测和变送环节也有一定的时间滞后,但和控制对象房间的时间常数相比,可以忽略不计,因此温度检测和变送环节可以近似用一阶比例环节来代替。

2 模糊温度控制器的设计

  模糊控制(fuzzy control)是一种对系统控制的宏观方法,加入了控制规则,规则通常采用“IF-THEN”方式来表达实际控制中的专家知识和规则,其最大的特征是将专家的控制经验、知识表达成语言控制规则,用规则去控制目标系统,特别适用于那些数学模型未知的、复杂的、非线性系统进行控制。

  模糊控制系统的结构如图1所示。


图1

  设计模糊控制器的第一步是确定语言变量、语言值和隶属度函数。本文涉及的模糊控制器有两个输入信号和一个输出信号,分别为:

  1) 输入语言变量之一,记为e,是温度设定值和回风温度的偏差,e=s-y。
  2) 输入语言变量之二,记为de/dt是偏差的变化率。
  3) 输出语言变量,记为u,是电动水阀的控制电压,单位为V,对应电动水阀的开度。

  输入语言变量e的取值:{负大,负中,负小,零,正小,正中, 正大},表示符号 {NB,NM,NS,ZE,PS,PM,PB}。语言值隶属度函数选择三角形,如图2(a)所示。



图2 a

  输入语言变量de/dt的取值:{负大,负中,负小,零,正小,正中,正大},表示符号{NB,NM,NS,ZE,PS,PM,PB}。语言值隶属度函数选择三角如图2(b)所示。


图2 b

  输出变量u的取值:{关闭,微开,小开,半开,小半开,大半开,全开},表示符号{CB,CM,CS,M,OS,OM,OB}。语言值隶属度函数选择梯形,如图2(c)所示。


图2 c

  每个语言变量所取的语言值,所对应的语言值隶属函数都是交叉重叠的。初始设定时,可采用均匀等分的方式布置,然后再根据系统仿真或实际的控制结果进行合理的调整。

  设计模糊控制器的第二步是引入模糊推断、逻辑实现和控制决策推断。而推断逻辑是由一组IF-THEN的控制规则组成的。这一组控制规则的形成来源于实际经验的总结。

  从经验出发,用语言形式表达表达推理控制决策过程如下:

  IF{温度设定值和回风温度偏差过大AND偏差有变大的趋势}THEN{电动水阀全开};
  IF{温度设定值和回风温度偏差过小AND偏差有变小的趋势}THEN{电动水阀全闭};

  类似于上述的一系列控制规则集中在控制规则表中。

  在应用模糊控制器实际进行实时控制时,一定的偏差e和偏差变化率de/dt,对应的就有某一些IF-THEN控制规则生效,而这些生效的控制规则产生一个综合推断结论,并通过解模糊过程转换为一个确定的输出值,从而给定电动水阀的控制电压,对应于电动水阀的开度。我们应用了模糊逻辑的min-max合成运算获得综合推断控制决策,并通过mom法,进行解模糊,产生确定的控制调节作用。

3 系统仿真

  MATLAB中的模糊逻辑工具箱提供了大量的对输入、输出变量进行模糊化(隶属度函数)的函数(总共提供了11种隶属度函数),可以很方便的完成对变量的模糊化。在模糊控制箱中只需给定输入、输出变量的隶属度函数即可完成对变量的模糊化。

  3.1 输入、输出变量的模糊化

  图3所示的模糊控制系统为双输入单输出系统,输入为偏差e和偏差的变化率,输出为u,我们可根据前边给定的输入、输出变量的隶属度函数,在模糊逻辑控制箱添加隶属度函数就可以完成模糊变量的模糊化过程。

  3.2 模糊控制规则

  MATLAB中的模糊逻辑工具箱提供了规则库,将模糊控制规则添加到规则库即可。模糊控制规则是设计一个模糊控制器的关键,该规则给定的好坏将直接影响到所设计的模糊控制器的性能好坏。

  3.3 反模糊化

  MATLAB中的模糊逻辑工具箱提供反模糊化方法(总共提供5种反模糊化方法,即centriod, bisector, mom, lom, som),我们选用其中的mom法,即可对所设计的模糊控制系统进行仿真。

  3.4 仿真结果

  通过上述工作,完成对模糊控制器的设计,在模糊控制系统仿真框图中加入模糊控制器,通过调用相应的模糊推理矩阵,即可对所设计的模糊控制系统进行仿真。

  在仿真过程中可根据系统仿真或实际的控制结果调整输入、输出的隶属度函数,一直调整到理想的控制效果为止。

  上述模糊控制系统的阶跃响应曲线如图3所示。为了分析比较,对上述系统的控制效果与传统的PID控制效果放在一个坐标系里。从系统仿真曲线看,PID控制器的系统响应曲线有超调,过渡时间比较长,而模糊控制器的系统响应曲线比较平稳,没有超调。


图3

4 结论

  使用以上设计的模糊控制器,通过计算机实现实时控制。根据偏差和偏差变化值的大小,再利用模糊控制规则确定电动水阀的输出,从而取得了良好的控制效果,能实时地对温度进行监控,具有以下特点:

  1)和普通PID控制器控制效果相比,采用模糊控制器后系统响应超调小,响应曲线平稳。
  2)系统具有良好的响应速度、稳定性和精确性,且具有较强的鲁棒性。
  3)由模糊控制规则确定的三个参数是动态变化的,更符合空调系统的控制特点。
  所以说模糊控制器可以克服普通PID控制器的局限性,在中央空调自动控制中具有广泛的应用价值。

关键字:偏差  模糊控制器  系统响应 引用地址:模糊控制器在中央空调系统温度控制中的应用

上一篇:基于CIEDE 2000的陶瓷砖小色差检测研究
下一篇:创新的带钢热处理解决方案

推荐阅读最新更新时间:2024-03-30 21:32

稳定系统中的惯性MEMS的频率响应分析方案
稳定系统简介   无人飞行器安装的监控设备、海上微波接收机、车辆安装的红外成像系统传感器以及其他仪器系统都需要具有稳定的平台,以达到最佳性能,但它们通常在可能遇到振动和其他类型不良运动的应用中使用。振动和正常车辆运动会导致通信中断、图像模糊以及其他很多行为,从而降低仪器的性能和执行所需功能的能力。平台稳定系统采用闭环控制系统,以主动消除此类运动,从而保证达到这些仪器的重要性能目标。图1是平台稳定系统的整体框图,它使用伺服电机来校正角向运动。反馈传感器为仪器平台提供动态方位信息。反馈控制器处理这些信息,并将其转换为伺服电机的校正控制信号。   图1. 基本平台稳定系统。   由于很多稳定系统需要多个轴向的主动校正,因此
[安防电子]
稳定<font color='red'>系统</font>中的惯性MEMS的频率<font color='red'>响应</font>分析方案
气动人工肌肉控制创新:自适应模糊滑模控制器突破
气动人工肌肉(PAM)作为模拟人体运动的有潜力的执行器,近年来在 机器人 、康复和假肢等领域得到广泛应用。然而,由于其非线性特性,PAM系统的运动轨迹控制一直面临挑战。 近日,一组研究人员提出了一项创新的自适应模糊滑模控制器的方法,通过模糊逻辑来估计PAM系统的控制参数,从而显著提高了其运动精度和适应性。 PAM通常由橡胶制成,表面覆盖编织纱线,可以模仿人体肌肉的特性,当充气时,PAM会变硬并收缩;当放气时,会变软并伸展。然而,PAM是非线性系统,存在延迟,因此需要有效的控制系统来调节其性能。 传统控制方法在处理PAM系统的非线性和滞后现象方面存在一定局限性,因此需要新的解决方案。该研究团队由日本芝浦理工学院工程学院副教授Ngoc
[机器人]
嵌入式系统实时性的问题
引 言 随着后PC时代以及网络、通信技术时代的到来,大量的计算机专业人员进入了嵌入式应用领域;然而,有大量的嵌入式系统应用是以单片机的形式,应用在传统的电子技术领域中。因此,以计算机领域人员为主体的,远离对象系统的嵌入式系统的计算机工程应用模式,和以电子技术领域人员为主体,与对象系统紧耦合的电子技术应用模式产生了概念上的碰撞。许多电子技术应用模式熟视无睹、习以为常的概念,在计算机工程应用领域中作为一个新概念提出时,常常使电子技术应用领域中的人员感到莫明其妙。以前的“嵌入式系统”概念是其一,而今“嵌入式系统的实时性”又是一例。 1 什么是电子系统的实时性 任何一个电子系统都可看成是一个激励-响应系统。每个特定的电子系统都有
[嵌入式]
基于虚拟仪器的同步伺服系统PID模糊控制器设计
1.引言 颤振试飞历来是飞机试飞最后关注的课题,因为它直接影响飞行安全。在颤振试飞实验中,颤振激励系统是颤振试飞的重要设备之一。 直流伺服系统作为驱动单元,是颤振激励及分析系统研制中技术难度和风险较大的一环,涉及到同步控制、小型特种永磁无刷直流伺服电机技术等一系列问题。本文以LabVIEW 7软件为开发平台,运用LabVIEW 强大的数据采集功能及其PID和Fuzzy logic两个工具箱为该伺服系统设计一个基于虚拟仪器的控制器,完成双电机的同步控制。 2 基于虚拟仪器同步伺服系统控制器的设计 2.1 同步伺服系统的组成 位置——速度双闭环直流伺服系统原理框图 整个颤振激励器的直流伺服系统原理框图如图1。该直流伺服系统主要
[测试测量]
基于虚拟仪器的同步伺服<font color='red'>系统</font>PID<font color='red'>模糊</font><font color='red'>控制器</font>设计
模糊PID控制器在伺服系统中的应用
0 引言   传统PID(比例、积分和微分)控制原理简单,使用方便,适应性强,可以广泛应用于各种工业过程控制领域。但是PID控制器也存在参数调节需要一定过程,最优参数选取比较麻烦的缺点,对一些系统参数会变化的过程,PID控制就无法有效地对系统进行在线控制。不能满足在系统参数发生变化时PID参数随之发生相应改变的要求,严重的影响了控制效果。本文介绍了基于车载伺服系统的模糊PID控制,它不需要被控对象的数学模型,能够在线实时修正参数,使控制器适应被控对象参数的任何变化。并对其进行仿真验证,结果表明模糊PID控制使系统的性能得到了明显的改善。 1 传统PID与模糊PID的比较   1.1 PID控制   PID控制器问世至今凭
[嵌入式]
改变血压监测仪的外观
  “tensymetry”这个词在《韦伯斯特词典》中没有解释,但在医学界却广为人知。由Tensys Medical Systems公司开发的tensymetry是一种使用生物机械、电气、软件工程的专有组合技术。利用这三种强大的技术,你可在手术室内对病人的心跳血压进行精确、连续、实时和非侵入性测量。   该技术结出的果实就是该公司的T-line Tensymeter产品。该产品线的最新进展是去年三月推出的TL-150(图1)。由于在运动容差上的进步,戴在患者手腕上的TL-150与其前代相比已大有改进。它在桡动脉测量血压。   根据主要麻醉学者的意见,这项发展完全是革命性的。“TL-150会改变我们未来测量血压的方式。”得克萨斯大
[医疗电子]
改变血压监测仪的外观
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved