利用完全可编程平台实现高效的马达控制

发布者:koimqerolulk最新更新时间:2018-01-06 来源: 互联网关键字:马达  马达控制 手机看文章 扫描二维码
随时随地手机看文章

环保一直是备受关注的话题,为了实现低碳生活,发达国家的政府以税费的方式来降低碳排放和能源使用。超过半数的电力用于驱动电动机,因此设计人员不是应该而是必须采用更加高效的电机控制与设计。


本文将介绍综合运用磁场定向控制(FOC)算法和脉冲频率调制(PFM)严密地控制电机,实现高精度与高效率。


磁场定向控制(FOC)算法


标量控制(或者常称的电压/频率控制)是一种简单的控制方法,通过改变供电电源(电压)和提供给定子的频率来改变电机的扭矩和转速。这种方法相当简单,甚至用8/16位微处理器也能完成设计。不过,简便的设计也伴随着最大的缺陷——缺乏稳健可靠的控制。如果负载在高转速下保持恒定,这种控制方法倒是足够。但一旦负载发生变化,系统就不能快速响应,从而导致能量损失。


相比而言,FOC能够提供严格的电机控制。这种方法旨在让定子电流和磁场保持正交状态(即成90度角),以实现最大扭矩。由于系统获得的磁场相关信息是恒定的(不论是从编码器获得,还是在无传感器工作状态下的估算),它可以精确地控制定子电流,以实现最大机械扭矩。


一般来说FOC比较复杂,需要32位处理器和硬件加速功能。原因在于这种方法需要几个计算密集型模块,比如克拉克变换、帕克变换等,用于完成三维或二维坐标系间的相互转换,以抽取电流相对磁通的关系信息。


如图1所示,控制电机所需考虑的输入包括目标扭矩指令、供电电流和转子角。根据这些参数完成转换和计算,计算出电力电子的新驱动值。完成一个周期的FOC所需的时间被称为环路时间。不出所料,环路时间越短,系统的响应速度就越快。响应速度快的系统意味着电机能够迅速针对负载做出调整,在更短的时间周期内完成误差补偿,从而实现更加顺畅的电机运行和更高的效率。


一般采用嵌入式处理器实现FOC算法,环路时间介于50us到100us之间,具体取决于模型和可用的硬件。此外,还可采用软件来实现FOC,但无法保证其确定性。因此大量设计借助FPGA硬件加速,来发挥这种技术的确定性和高速处理优势。使用最先进的28nmFPGA技术,典型FOC电流环路时间为1.6us1,相对采用软件方法明显缩短。


由于加强电机控制不仅可降低噪声,而且还能提升效率和精度,因此目前大部分电流环路都采用硬件来实现,而且倾向于把速度环路和位置环路也迁移到硬件实现方案中。这种做法是可能的,因为随着数字电子电路技术的进步,单个器件拥有足够强大的运算能力。用FPGA实现的速度控制环路时间和位置控制环路时间分别为3.6us1和18us1。与传统软件方法相比这是显著的性能提升,因为传统的位置环路时间一般在毫秒级。


调制


调制也是提高能效的关键模块。根据负载、性能要求和应用需求可以使用不同的调制方案,而且这些调制方案对电机控制系统的运行影响重大。调制原理图(图2)分析了我们准备在本文中评论的几种调制方案。


最基本的调制方案采用六步进调制法,这代表三相功率桥的6种可能组合(不含111和000空状态,该状态下所有开关均关断)。这种开关方法表示为六边形的6个蓝色顶点。六步进调制法对电机施加最大功率,即逆变器的输出电压与Vdc相等。


虽然输出功率大,设计实现方案简便,但如果电机要求高精度和高稳健性,则不宜采用六步进调制法。这是因为电机运行在非线性状态下,需要从一种状态(顶点)“跳跃”到另一种状态,不能平稳运行。


要让电机更平稳运行,可以使用正弦调制法。正弦调制法能够让电机平稳运行吗,虽然与六步进调制法相比这种方法略显复杂,而且在效率上也没有优势,因为逆变器的输出仅为Vdc的一半,基本上是Vdc/2=0.5Vdc。在调制原理图上,这表示为红圈的内圈。


为弥补正弦调制造成的损耗,空间矢量PWM(SVPWM)调制法运营而生。SVPWM可以提供1/√3Vdc=0.5773Vdc的电压。与正弦调制类似,SVPWM也能让电机平稳运行。在调制原理图上,这表示为红圈的外圈。图3是正弦调制法和SVPWM调制法的波形对比。


正弦调制法和空间矢量调制法均使用脉冲宽度调制(PWM)技术,一种最为常见的工业调制技术。但是脉冲宽度调制使用固定的调制频率,通过改变脉冲宽度来调节对供电电压的控制,故谐波的出现是个问题。谐波是EMI、电机振动的原因,也是一种能量损耗。


为抑制谐波,可以使用另一种调制方法,即使用脉冲频率调制(PFM)。脉冲频率调制可让少量脉冲保持固定宽度,并根据所需的值按不同周期(频率)进行调制。这种调制方法可以减少谐波,因谐波会分散到所有频率上。


即为对PWM和PFM的FFT(快速傅里叶变换)频率分析的对比情况。可以清楚地看到PFM可以消除第三次谐波失真。

关键字:马达  马达控制 引用地址:利用完全可编程平台实现高效的马达控制

上一篇:工业4.0时代突出的特点是什么
下一篇:厦华电子宣布拟16亿元收购福光股份 进军光学元组件领域

推荐阅读最新更新时间:2024-03-30 22:00

飞思卡尔发布可直接驱动车窗升降器马达的车载MCU
  飞思卡尔半导体日本发布了混载有马达驱动电路的马达控制用车载MCU“S12VR64”。主要用于控制车窗升降器和天窗的马达。此次的S12VR64是该公司“S12 MagniV”车载MCU系列的新产品。该系列中有将高压高电流电路芯片和普通MCU芯片集封装在一起的SiP(系统级封装)产品和将高压高电流电路和MCU封装于一枚芯片的产品,S12VR64是属于后者的首款产品。   以前控制车窗升降器的马达,需要与电池连接来驱动马达的驱动电路以及控制该驱动电路的MCU等多种元器件。相比之下,新产品的一大特点是将用于连接车载网络“LIN”的元器件、马达驱动电路、存储器以及MCU等集成于一枚芯片。因此,能够以其驱动和控制具有防夹等功能的车窗升降器
[汽车电子]
日本电产的驱动马达系统被采用于吉利汽车高端电动汽车型
日本电产的驱动马达系统“E-Axle”200kW机型被采用于吉利汽车高端电动汽车品牌“Zeekr”的首款车型中   中国的知名造车企业——吉利控股已决定在其高端品牌“Zeekr”(极氪)所发布的新款电动汽车“ZEEKR 001”中采用日本电产(以下简称“本公司”)的驱动马达系统“E-Axle”的200kW机型“Ni200Ex”。 “ZEEKR 001”是一款基于吉利控股-极氪智能科技 Zeekr开发的电动汽车平台“SEA(Sustainable Experience Architecture)”所开发的猎装轿跑(*1)高级电动汽车(全长4,970mm×全宽1,999mm×全高1,560mm)。该车型可选择单电机或前后
[汽车电子]
日本电产的驱动<font color='red'>马达</font>系统被采用于吉利汽车高端电动汽车型
意法发表2.6A有刷直流马达驱动器芯片
意法半导体(ST)扩大其微型低压高效马达驱动器产品组合,推出电池供电之携带式和穿戴式装置的STSPIN250 2.6A有刷直流马达单芯片驱动器。 新款驱动器芯片在一个可节省携带式装置空间的3mm×3mm微型封装内,其整合一个功率MOSFET全桥和一个关断时间固定的PWM电流控制器。 功率级的低导通电阻(上桥臂与下桥臂共200mΩ)和低待机功耗(小于80nA),有助于最大限度延长携带式装置的电池续航时间,并降低机壳温度。 STSPIN250的高输出电流适用于中低功率设备,例如携带式打印机、POS支付终端机、消费性电子装置、电动阀门、电动门锁、玩具,以及注射泵、电动牙刷等医疗保健产品。 新款驱动器还内建了全面的保护功能,包括欠压锁保护
[半导体设计/制造]
PWM马达/灯控制器电路
PWM马达/灯控制器电路-PWM Motor/Light Controller A pulse width modulator (PWM) is a device that may be used as an efficient light dimmer or DC motor speed controller. The circuit described here is a general purpose device that can control DC devices which draw up to a few amps of current. The circuit may be used in 12 Volt
[工业控制]
PWM<font color='red'>马达</font>/灯控制器电路
HEV系统的主要部件:马达与逆变器详解
  构成HEV系统的主要部件包括马达、逆变器、电源系统、高电压辅机系统等。车载用马达大多使用交流马达,对小型轻量化、高输出功率、高转速等方面要求严格。逆变器由功率元件、电容和控制电路组成。本文将对二者的特征和性能要求等进行讲解。   混合动力车(HEV)的驱动心脏是马达。首先来看马达的特征。   马达是提供HEV及电动汽车(EV)驱动力的重要部件。乘用车行驶使用的马达一般输出功率为10k~60kW左右。由市售车辆改造而来的EV和小型EV虽然使用直流(DC)马达,但交流(AC)马达仍占主流(表1)。 大量采用永久磁铁型马达     对于HEV用马达,可以列举的性能要求有小型化所需的高输出功率化、
[嵌入式]
elmos推多款汽车LED照明及马达驱动解决方案
德国elmos公司日前宣布将亮相于3月17-19日在上海举办的慕尼黑电子展。届时,elmos将推出多款LED照明及马达驱动系列应用方案。其中,针对车用LED照明,elmos将重点推出车前灯、尾灯以及车内饰照明等方面。而其马达驱动的解决方案则可以应用于油泵、水泵、液压、空调风机、发动机冷却风扇、大灯随动转向系统及阀门控制系统等。欢迎参观elmos展台E3馆,3346号 开关电源恒流LED驱动系列-E522.31/32/33/34 该系列芯片基于开关电源的工作原理,实现高效率、高可靠性的恒流控制策略适用于汽车头灯、日间行车灯或者是后雾灯。其输入电压范围从5V到55V,在 Boost工作模式下能够产生高达60V的输出电
[电源管理]
elmos推多款汽车LED照明及<font color='red'>马达</font>驱动解决方案
分体式LCD显示马达控制与保护单元
0  引言   伴随着电子式电动机保护器的大力推广及应用,客户对这种新式的电子式保护装置的应用更加熟悉,同时也对产品的使用提出了更高要求,尤其是参数设定、故障查询等人机交互方面。 1  分体LCD显示方案的提出    前一代ARD3电动机保护器分为一体式、分体72F、分体90F,都采用LED(数码管,以下都以LED代表数码管)显示方式。在现场应用中LED显示方式亮度高,即使在光线不好的地方也可以达到一目了然的效果,使用寿命长,产品价格便宜。   与之相比LCD(液晶,以下都以LCD代表液晶)显示亮度不够,在产品附近才有比较好的显示效果,观看角度不同效果不同,和我们使用笔记本电脑时,显示屏旋转角度不同亮度不同一样。LCD产品价格较LE
[嵌入式]
Xilinx便携式消费应用器件创销售新记录
同时新推低成本CoolRunner-II 入门套件缩短手持设备的开发时间 2007年6月13日,北京 ——全球可编程解决方案领导厂商赛灵思公司(Xilinx, Inc. (NASDAQ:XLNX))今天宣布,在PDA、蜂窝电话以及MP3播放器等便携式消费电子应用的强劲推动下,赛灵思公司CPLD(复杂可编程逻辑器件)营收增长速度达到两位数。赛灵思业界素有盛誉的领先的低成本低功耗CPLD,使得CoolRunner-II系列低功耗CPLD季度营收增长率高达30%。CPLD产品营收占赛灵思公司总营收的10%,在过去5个自然年度里,来自CPLD产品线的年收入增长了85%以上,而同期整个CPLD市场的增长率仅为17%(2006年与2002
[新品]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved