基于STPM01的防窃电电能表设计

发布者:TechGuru123最新更新时间:2006-06-12 来源: 电子工程专辑关键字:窃电  数字式  单相 手机看文章 扫描二维码
随时随地手机看文章

不论在发达国家还是在发展中国家,窃电都是一个非常棘手的问题,每年都给供电企业造成巨大损失。现在的防窃电方法多是从管理上采取措施,用这些方法即使查出了窃电行为,也往往由于缺乏依据而无法确定处罚额,甚至有时供电企业面临无法拿出窃电证据的尴尬。只有提高电能表本身的防窃电技术,才能从根本上杜绝窃电发生。由于窃电方法千变万化,防窃电电表设计一直是电表工程师面临的严峻挑战,数字式电表的发展为解决窃电问题提供了新途径。本文介绍的单相数字式防窃电电能表采用了计量芯片STPM01和微控制器P89LPC9401,可以有效防止多种窃电行为。

STPM01计量芯片简介

STPM01是ST公司推出的第一款电能计量专用芯片,有一个电压通道和两个电流通道,可以测量有功电能、无功电能、视在电能、电网频率、电压有效值和瞬时值以及电流有效值和瞬时值。其电流传感器可以选用ROGOWSKI线圈、电流互感器或者锰铜分流器。它是一款高精度计量芯片,在5%到1,000%动态范围内,可达到0.2%。STMP01主要由两部分组成即模拟部分和数字部分,包括前值放大器、A/D转换器、带隙电压基准、调压器、DSP和SPI接口等。

图1:STPM01内部框图。

芯片上还配置了56位OTP存贮器,可以将校表数据等信息烧录到芯片上。调压器除了向内部模拟和数字电路供电外,还向外部提供3V和1.5V电源。

电压通道的差分放大器增益为4倍,其输入最大差分信号为±0.3V。电流通道除了前置放大器外,还有一个可编程放大器,两个电流通道的放大倍数可独立编程,这为电流通道选用不同的传感器提供了方便。

STPM01内部有2个有功电能寄存器,即0类有功电能和1类有功电能。0类为基波有功电能,1类为含谐波的总有功电能(FUND=1时)。因此利用这两个寄存器可以计算出谐波电能含量。除测量和配置寄存器外片内还设有状态寄存器和模式寄存器。

通过设置配置位,STPM01可以独立工作,也可以作为单片机外围设备。在独立模式下,STPM01(MON和MOP管脚)可以直接驱动步进电机计度器,同时LED管脚输出有功电能脉冲,脉冲常数通过配置位选择。此模式下,SDA/TD管脚输出窃电指示信号,SCL/NLC管脚输出无负载指示信号,SYN管脚输出电能反向指示信号。上电后,芯片按照OTP中的配置信息进行工作。

作为单片机外围设备时,STPM01可作为从机通过SPI接口与单片机通信,将测量数据、状态信息和配置信息传送给单片机,单片机还可以修改其配置位,实时更改STPM01的工作方式。配置位APL=0时,MOP管脚输出电压过零信号,MON输出看门狗信号。而通过设置配置位KMOT,LED管脚可以输出基波有功电能、总有功电能、无功电能或视在电能脉冲;APL=1时,MOP脚输出电压A/D转换值,MON脚输出电流A/D转换值,LED脚输出电流通道选择信号。

STPM01有两个电流通道,可分别用于监测火线和零线电流,当两者的差别超过设定阀值时,芯片进入窃电状态,取较大者用于电能计算。阀值可通过配置位设为12.5%或6.25%。当两通道电流符号不同时,不判断电流大小直接进入窃电状态。在窃电状态下,窃电状态位BIT置位,如果此时芯片工作在独立模式,窃电状态还通过SDATD管脚输出。

STPM01还有一种单线计量模式。如果FRS设为1,在没有输入电压信号或电压信号稳定不变时,芯片进入单线计量模式。此时不对电压信号采样,而用设定的额定电压计算电能(按功率因数为1计算)。单线计量模式要求电流传感器必须采用ROGOWSKI线圈。累加方式也可以选择,配置位ABS置1时电能按绝对值累计,ABS清零时电能按代数和累计。

P89LPC9401微控制器简介

P89LPC9401是一款低成本单片机,它采用了高性能处理器结构,指令执行时间只需2到4个时钟周期,6倍于标准80C51器件。它实际上是P89LPC931微控制器和PCF8576D液晶驱动器的复合体。其主要特性如下:8KB的Flash程序存储器,单字节擦除特性使每个字节都可用作非易失性数据存储器;256B RAM数据存储器;4×32段LCD驱动器;2个模拟比较器,2个16位定时/计数器和1个RTC定时器;8个键盘中断输入,2路外部中断输入;4个中断优先级;有20~23个I/O口,端口驱动能力20mA;具有I2C、SPI和增强型UART端口;CPU时钟可选择片内看门狗振荡器、片内RC振荡器、外部晶振振荡器或外部时钟源;掉电检测可在电源故障时使系统安全关闭;具有空闲和两种不同的掉电模式及唤醒功能;可选择片内复位或外部复位;支持ICP、ISP和IAP编程,Flash保密位防止程序读出;VDD工作电压范围为2.4~3.6V,I/O口可承受5V。

系统方案

电表设计用于220V/50Hz电网,基本电流10A,最大电流40A。主要由计量模块、系统控制模块、数据显示及存贮模块、通讯模块、RTC实时时钟和电源模块组成。

图2:电表设计系统框图。

电压和电流分别由电阻分压器和电流互感器和锰铜分流器取样,取样信号送入计量芯片STPM01,由STPM01对信号进行采样并转换为数字信号,再经过相位校正,计算出电能、电流、电压等数据,STPM01自动选择电流较大的通道计算电能。这些数据通过SPI接口传送给LPC9401。

LPC9401读取计量芯片数据后,完成电能的累计、存储和显示,并输出电能脉冲,实时检测电表工作状态,记录所发生的窃电事件,给出窃电指示信号。通过红外通讯模块实现对电表数据抄读和设置,电源模块为整个系统提供工作电源,电源掉电后,单片机关闭液晶显示,进入完全掉电模式,将功耗降到最低,仅由后备电池维持单片机内部RTC运行。

P89LPC9401资源十分丰富,具有多种总线接口。其SPI接口用于连接STPM01,I2C接口用于LCD显示和EEPROM数据存贮,UART接口用于红外通信,外部中断1用于掉电检测。为降低成本,采用内部RTC为事件记录提供时标,CPU时钟源也采用内部的RC振荡器,通过DIVM寄存器2分频将CPU时钟调整为3.686MHz,以降低系统功耗。采用内部和外部双看门狗的设计,提供系统可靠性。内部看门狗使用独立振荡器,将STPM01设置为外部看门狗,其看门狗复位信号连接到LPC9401的键盘中断口。

STPM01与P89LPC9401接口设计

STPM01的SPI接口是一个两线口,其数据输入输出是同一个管脚,与标准三线SPI口不同。我们采用了图3所示方法连接两芯片。

作为SPI总线主机,LPC9401输出时钟信号,STPM01依照SCLNLC的时钟信号进行通信。为提高抗干扰性能,在连线中串联一个10~100Ω电阻,该电阻与芯片管脚输入电容构成低通滤波器,滤除连线上的干扰。LPC9401读取STPM01数据时,使用片上的SPI模块。而向STPM01写数据时,不使用SPI总线控制模块,而采用软件模拟SPI时序输出数据。这样设计是考虑到电表运行时,LPC9401很少向STPM01写数据,而读数据非常频繁。这种设计充分利用了芯片的资源,提高了程序运行效率。

取样电路设计

电压取样采用电阻分压,考虑到贴片电阻的耐压有限,选用4只200kΩ电阻做分压器。STPM01电压通道最大输入差分电压为±0.3V,对于50Hz交流电,对应有效值为0.21VRMS,输入信号不能大于此最大值,否则会出现削峰。考虑到余量,对于220V额定电压,我们取0.16VRMS,则

取样电阻=200×4×0.16/220=581Ω,我们选560Ω作为取样电阻。

相电流传感器我们采用互感器,变比为5,000:1。该通道增益设置为8,则输入最大信号为0.105VRMS,考虑到一定余量,在40A时,输入信号选择在0.08VRMS左右,则互感器负载电阻为0.08/40×5,000=10Ω。

零线电流通道我们采用锰铜分流器,分流器阻值取250μΩ。阻值不能取得过大或过小,如果选得过小,则在小电流时取样信号太微弱,导致误差增大,容易超差。如果选得过大,则大电流时分流器发热过大,造成误差不稳定。

图3:SPI接口示意图。

对于250μΩ分流器,在40A时其两端电压信号为250×40=10,000μV,即10mVRMS。取样信号非常小,所以该通道增益应设置为最大即32倍,此时信号输入最大幅度为26.25mVRMS。实际最大输入信号小于允许的最大输入信号,分流器阻值选择合理。

电源电路设计

电源模块由主电源和副电源组成,主电源在电压线路电压存在时工作。当电压消失,而电流线路有电流时,副电源为系统提供电源,此时电表按照设定方式计量电能。

STPM01工作电压为3.0~5.5V,LPC9401工作电压为2.4~3.6V,考虑到功耗和余量,系统工作电压设计为3.3V。主电源我们采用线性电源,220V交流电经变压、整流、滤波和稳压后得到3.3V电源。对于副电源,首先由一个电流-电压感应器将电流线路的电流通过电磁感应转换为交流电压,当火线和零线中的电流大小相等方向相反时,感应器无电压输出,否则会输出一定幅度的电压,此电压经整流、滤波和稳压后得到3.3V电源。

软件设计

电表软件采用模块化设计,主要包括以下几个子程序:电能计量子程序、显示子程序、日历子程序、掉电处理子程序、通讯子程序等。

这里主要介绍一下电能计量子程序。电表上电后,主程序进行初始化,写入STPM01配置参数,设定定时时间以定时调用电能计量子程序。计量子程序读取测量数据和状态,计算出电量值并输出电能脉冲。主电源失电后,若从STPM01读取得电流值不为零,则认为电表处于单线计量的窃电状态,此时以额定电压计算电量。定时读取STPM01的时间,应满足在最大电流时,电能寄存器不发生溢出,并考虑一定过载余量。由于启用了STPM01的看门狗功能,如果1.6s内没有对STPM01进行读/写,STPM01就会输出看门狗信号,使MCU产生中断。因此,定时读取时间最长不能超过1.6s。

图4:电能计量子程序流程图。

防窃电功能

本方案设计的电表,可以防止以下几种窃电行为。

1. 进出线反接:即负载端和电网端接线对调,此时测得的电能为负值。此时对于普通机械式电表,其计度器将反转,导致读数减少,而本表仍按正向累计电量;

2. 进出线旁路:即相线或零线的进线和出线被旁路,此时普通电表会少计旁路电能,本表则能准确计量实际耗电;

3. 相零对调:即相线与零线对调,本表仍能准确计量电能;

4. 负载接地:即负载只接相线,而将零线接入大地,本表仍能准确计量电能;

5. 相零对调并且负载接地:此时普通电表不计电能,而本表能准确计量电能;

6. 单线计量:即在入线侧将零线断开,负载接出线侧相线,另一端接地。此时普通电表不能工作,无法计量电能,本表在负载电流达到2A以上时,可以计量电能,并且精度可以达到1%以上。

以上各种手法组合使用时,本表也能达到防窃电目的。

本文小结

本设计采用STPM01作为核心计量芯片,P89LPC9401作为系统控制器,整个系统功耗低,性能稳定。整表功能强大,精度高,动态范围大,误差稳定。如果提高电流-电压感应器的转换效率,并努力降低系统功耗,则单线计量启动电流可以进一步降低,有希望做到1A以下,防窃电效果会更理想。

参考文献

[1] 陈劲游. 窃电与防窃电技术措施展望. 2005第十一届国际(珠海)电磁测量技术、标准、产品研讨会论文集.

[2] 意法半导体有限公司. STPM01数据手册

[3] 飞利浦半导体有限公司. P89LPC9401 Datasheet

关键字:窃电  数字式  单相 引用地址:基于STPM01的防窃电电能表设计

上一篇:基于MSP430FE42x的防窃电电能表及其应用分析
下一篇:USB-GPIB控制器的硬件电路设计

推荐阅读最新更新时间:2024-03-30 21:21

永磁无刷直流电机数字式控制器
    摘要: 本文提出直接采用C504嵌入式单片机的永磁直流无刷电机数字式控制器的方案,并在电动自动车中得到了应用,取得了良好的实验效果。     关键词: 单片机  无刷电机  数字式  控制器 一、概述 永磁直流无刷电机(PM-BLDC),由于其固有的许多特点,再加上我国稀土资源丰富,被众多电机专家认为是21世纪的新型换代产品。随着半导体集成电路,电力电子器件,控制原理和稀土材料工业的发展,可以预见这种产品必然会逐步取代传统结构的交流电动机加变频调速器的模式。 目前见到的文献中,控制器一般都采用Motorola公司的MC33035,MicroLinear公司的ML4425/4428或采用通用的PWM
[应用]
单相预付费分时电能表的设计与应用
  一、引言   分时表和预付费电能表由于各自的优点,现在已经广泛地被用户接受.   预付费电能表采用先购电再用电,到零断电的模式,解决了以往收电费难的问题.并且,由于电能表带有断电装置,可以实现一些辅助功能,如负荷控制、过流保护等等.并且使用预付费电能表后,可以方便地实现增容.   现有的预付费电表一般采用存贮媒介来传递信息,用户将购电信息输入电表的同时可以将电表内的用电信息读入存贮媒介传回售电部门,供电部门可以对传回的用电信息及时进出口行分析和统计.   分时电能表优点在于实施了峰谷电价,对于消费者而言能够享受到电价优惠政策,得到实实在在的实惠.对于供电部门来说,分时表能够起到一定的削峰填谷的作用,起到优化电网的效果,
[单片机]
基于AVR和FPGA高精度数字式移相发生器的设计
1引 言   语音编码算法利用语音信号的冗余信息及某些人耳不敏感的信息,可以在低比特率上获得较高质量的重建语音,压缩编码一直是通信中的关键技术。语音信号研究者们一直在寻求一种在保持语音质量不显著下降的情况下使语音信号的编码比特率最小的方法,特别地,低比特率语音编码体制(比特率在4.8 kb/s以下)因其广泛的需求而得到研究者的重视。   语音编码器的性能常常用比特率、延时、复杂度和质量4个属性来进行衡量,因此,在分析语音编码器的性能时,主要应该考虑这些属性。值得注意的是,这些属性之间不是孤立的,而是相互紧密联系的,例如,低比特率的编码器一般比高比特率的编码器有更大的延时、更高的算法复杂度和较低的语音质量。因此在对各种编码算法进
[嵌入式]
基于CAN总线的数字式传感器群管理系统
  随着自动化技术的不断发展与控制精度的不断提高,需要测量的参量也越来越多,例如:一个钢铁厂需要20 000台传感器及其仪表,一个电站需要5 000台传感器及其仪表,一部汽车需要30~100台传感器。传感器作为获取信息的工具,它位于信息系统的最前端,其特性的好坏、输出信息的可靠性与准确性对整个系统质量至关重要。   传统的测量手段和传感器存在很大的缺陷,就温度检测为例,早期的温度测量采用的是热电偶电桥法,虽然这种方法测量精度较高,但是测试过程复杂。即使采用集成的半导体模拟温度传感器,但在测点相隔相对较远、测点较多的场合,需要大量的传输电缆,不但传输干扰大,且成本高和不易维护。这些都是采用模拟传感器构成检测系统常遇到的困难。 1 新型
[嵌入式]
数字式断相与相序保护系统的设计
1 引 言   断相与相序保护是较大功率三相交流电动机及不可逆转传动设备中的交流电机起动设备中不可缺少的部分,通常使用模拟的断相与相序保护继电器,随着数字技术,尤其是微计算机技术的发展,数字式断相与相序保护技术就成为现实,它具有体积小、能耗低、准确可靠、便于计算机控制系统接口的优点,并逐渐成为三相交流电动机起动保护的主流。    2 断相与相序保护系统简介   2.1 三相交流电动机控制系统   三相交流电动机电源控制回路如图2—1所示。按下QA按钮,若电源A、B、C三相正常时,电动机就能正常起动工作;若三相电源中任何一相熔断器开路或供电电源与原认定相序错相时,控制系统发出报警信号,切除CJ主回路电源,三相交流电动机不能起
[模拟电子]
<font color='red'>数字式</font>断相与相序保护系统的设计
数字式速度传感器的性能及其应用
数字式速度传感器的性能主要有: (1)脉冲数和分辨率。数字式速度传感器的输出是脉冲信号,每转输出脉冲数代表传感器的分辨率。 (2)频率调制。当传感器恒速旋转时,频率调制是指相对中心频率的频率偏摆。 (3)频率响应。传感器的输出脉冲是随频率而变,超过一定频率响应后,传感器的输出脉冲波形变坏,误差太大,传感器工作失常。通常,传感器的最大频率响应较大,均能满足使用要求。 (4)转动惯量。传感器的转动惯量对系统的动态特性有较大的影响,而驱动用电动机的起动直接影响传感器的输出,因此,传感器的转动惯量应满足驱动系统的动态要求。 各类数字式传感器的性能不一,应该根据不同应用场合,选用不同数字速度传感器。现介绍几种主要应用。
[嵌入式]
SolarEdge展示拓展的单相太阳能逆变器生产线
    国际新能源网讯:在Solar Power International 2013,SolarEdge将展示其新拓展的大功率单相太阳能逆变器生产线,功率高达11.4kWac。     SolarEdge北美总经理彼得.马修斯(Peter Mathews)表示:“为了继续我们的增长,我们最近推出一系列商业解决方案,目前我们正在更上一层楼。在SPI,我们正在展示单相和三相光伏逆变器98% CEC加权效率以及UL1699B认证。”     然而,该公司指出,其功率优化器生产线将在2014年更新,新型“P系列”功率优化器具有更高功率、更高运行温度以及更简化的单螺栓固定板。     SolarEdge营销和产品战略副总裁利奥尔.汉德尔斯
[新能源]
基于DSP的单相光伏并网控制系统的设计
     世界范围内的能源短缺和环境污染已成为制约人类社会可持续发展的两大重要因素,大力发展新的可替代能源已成为当务之急。太阳能发电作为一种新的电能生产方式,以其无污染、安全、资源丰富、分布广泛等特点显示出无比广阔的发展空间和应用前景。随着光伏并网发电设备的增加,并网电流谐波带给电网污染的问题也得到了越来越多重视。为改善并网输出电流波形,文献采用了重复控制来抑制周期性干扰,但重复控制响应速度慢,使控制系统稳定性变差。文献提出了使用重复控制来改善输出波形质量,本文在此基础上提出了一种将重复控制和传统PI相结合的控制方法,PI控制使系统有着良好的动态性能,重复控制用来抑制周期性干扰,提高跟踪精度。   1 并网逆变器结构      本
[电源管理]
基于DSP的<font color='red'>单相</font>光伏并网控制系统的设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新工业控制文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved