金属纳米结构中的表面等离激元具有许多奇特的光学性质,如光场局域效应、透射增强、共振频率对周围环境敏感等,因而被广泛应用于纳米集成光学器件、癌症热疗、光学传感、增强光催化、太阳能电池以及表面增强拉曼光谱等。其中,利用表面等离激元设计与制作亚波长光学器件是一个崭新而迅速发展的研究方向。在一维金属纳米结构中,表面等离激元可以将光场限制在远小于光波长的横截面内,这一特性为光学芯片的高密度集成奠定了理论基础。 近年来,中科院物理研究所/北京凝聚态物理国家实验室(筹)徐红星研究组围绕基于金属纳米线的集成纳米光学芯片的原理开展了一系列原创性的研究工作,包括表面等离激元在纳米线中的角发射规律[Nano Lett. 9(12), 4383 (2009)],纳米线等离激元与单分子和单量子点的相互作用 [Nano Lett. 9(5), 2049 (2009), Nano Lett. 9(12), 4168 (2009)]、基于纳米线网络构筑的全光路由器和信号分离器[Nano Lett. 10(5), 1950 (2010)]及逻辑回路 [Nano Lett. 11, 471(2011)],以及证明了纳米光学逻辑单元的片上可集成性[Nat. Commun. 2, 387 doi: 10.1038/ncomms1388 (2011)]等。 最近,徐红星研究组的博士生张顺平和魏红博士等通过理论和实验相结合的研究发现:在均匀的介质环境中,不同模式的金属纳米线表面等离激元的相干叠加可以产生手性(左旋或右旋)的表面等离激元,使光场能量绕着纳米线螺旋地向前传播。与圆偏振光的产生原理类似,手性表面等离激元也是由两个具有固定π/2相位差且相互正交的分量(一阶模)叠加而成。通过改变入射光的偏振与纳米线的夹角,可以控制表面等离激元的手性(左旋或右旋)。而螺旋的周期也可以通过纳米线的大小、周围介质的折射率、激发光波长等参数来控制。这些性质对于亚波长光学器件与回路的设计与制作具有重要意义。利用量子点近场成像技术,可以精确的观察到等离激元的不同的手性传播特性。手性电磁波的一个重要应用是与手性物质相互作用。从纳米线末端发射出来的光子将保持表面等离激元的手性,因此,金属纳米线手性表面等离激元可用于设计宽带可调的纳米圆偏振光光源,即纳米尺度的1/4波片,可用于在纳米尺度上探测光与手性物质(如单个手性分子、单个DNA和蛋白分子的手性部分等)之间的相互作用。 相关工作发表在近期的Phys. Rev. Lett., 107, 096801 (2011)上。 上述工作得到了科技部、国家自然科学基金委和中科院知识创新工程的支持。 图1 (a) 局域光激发金属纳米线示意图;(b-e) 左:垂直或平行偏振激发下纳米线中的不同的模式以及它们的相位。右:被激发模式的电场分布。 图2 金属纳米线上的手性表面等离激元。(a) 表面电荷分布;(b) 不同横截面上光能流分布;(c) 螺旋的周期随纳米线半径的变化规律。 图3 不同偏振激光激发下量子点荧光成像。 图4 纳米线出射光保持了表面等离激元的手性。(a) 出射光的圆偏振度;(b) 圆偏振品质;(c) 圆偏振度对激发光偏振的依赖关系;(d) 圆偏振度(红线)与透过光强(绿线)随入射光波长的变化关系。 |
上一篇:CICC:石墨烯将在2024年取代CMOS半导体技术
下一篇:稀土掺杂半导体纳米发光材料研究取得新进展
- 热门资源推荐
- 热门放大器推荐
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况