隔离驱动IGBT等功率器件设计所需要的一些技巧

最新更新时间:2012-08-04来源: 21ic关键字:功率器件  IGBT 手机看文章 扫描二维码
随时随地手机看文章
   

功率器件,如IGBT,Power MOSFET和Bipolar Power Transistor等等,都需要有充分的保护,以避免如欠压,缺失饱和,米勒效应,过载,短路等条件所造成的损害。本在线研讨会介绍了为何光耦栅极驱动器能被广泛的接受和使用,这不仅是因其所具有的高输出电流驱动能力,及开关速度快等长处之外,更重要的,它也具有保护功率器件的所需功能。这些功率器件的保护功能包括欠压锁定(UVLO),DESAT检测,和有源米勒钳位。在电力转换器,电机驱动,太阳能和风力发电等系统的应用上,所有这些保护功能都是重要的,因它确保这些系统能安全和稳定的操作。另外,能把握如何正确的选用,设计这些光耦栅极驱动器来有效的使用/控制这些功能使到整个系统更简单,高效,可靠,是系统设计工程师不可或缺的技能!

下面是本次在线研讨会上的工程师朋友与专家的精彩互动摘选(二)。了解更多Avago IGBT门驱动产品,请点击链接。

1、请问:故障保护功能有哪些?都是集成在隔离驱动器里吗?谢谢!

3种故障保护功能都集成到Avago的高集成栅极驱动器ACPL-33xJ里 - UVLO(以避免VCC2电平不足够时开启IGBT),DESAT(以保护IGBT过电流或短路),和米勒钳位(以防止寄生米勒电容造成的IGBT误触发)

2、请问:如何避免米勒效应?谢谢!

IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到 15 V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断 期间 , 高dV / dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。

当上半桥的IGBT打开操作,dVCE/ dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。

有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。第一个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。

我们的解决方案是通过缩短门极 - 发射极的路径, 通过使用一个额外的晶体管在于门极 - 发射极之间。达到一定的阈值后,晶体管将短路门极 - 发射极地区。这种技术被称为有源米勒钳位, 提供在我门的ACPL-3xxJ产品。你可以参考Avago应用笔记 AN5314

3、请问:对于工作于600V直流母线的30~75A、1200V IGBT而言,ACPL-33x、ACPL-H342 这5颗带miller钳位保护的栅极驱动光耦能否仅以单电源供电就能实现高可靠性驱动,相比于传统的正负供电,可靠性是更高,还是有所不足?谢谢!

Avago ACPL-332J, ACPL-333J 以及 ACPL-H342 的门极驱动光耦可以输出电流 2.5A。这些产品适合驱动1200V,100A类型的IGBT。

1)当使用负电源,就不需要使用米勒箝位,但需花额外费用在负电源上。

2)如果只有单电源可使用,那么设计者可以使用内部内置的有源米勒箝位。

这两种解决方法一样可靠。米勒箝引脚在不使用时,需要连接到VEE。

4、请问:在哪些应用场合需要考虑米勒效应的影响?谢谢!

IGBT操作时所面临的问题之一是米勒效应的寄生电容。这种效果是明显的在0到 15 V类型的门极驱动器(单电源驱动器)。门集-电极之间的耦合,在于IGBT关断 期间 , 高dV / dt瞬态可诱导寄生IGBT道通(门集电压尖峰),这是潜在的危险。

当上半桥的IGBT打开操作,dVCE/ dt电压变化发生跨越下半桥的IGBT。电流会流过米勒的寄生电容,门极电阻和内部门极驱动电阻。这将倒至门极电阻电压的产生。如果这个电压超过IGBT门极阈值的电压,可能会导致寄生IGBT道通。

有两种传统解决方案。首先是添加门极和发射极之间的电容。第二个解决方法是使用负门极驱动。第一个解决方案会造成效率损失。第二个解决方案所需的额外费用为负电源电压。

我们的解决方案是通过缩短门极 - 发射极的路径, 通过使用一个额外的晶体管在于门极 - 发射极之间。达到一定的阈值后,晶体管将短路门极 - 发射极地区。这种技术被称为有源米勒钳位, 提供在我门的ACPL-3xxJ产品。你可以参考Avago应用笔记 AN5314

5、请问:我们光伏逆变器是安装在电厂,环境温度相当恶劣,请问贵公司光耦的工作环境温度范围?谢谢!

我们产品的工作环境温度范围可达-40°C至105°C。在工业应用情况下是足够的。如果客户需要更高的工作温度,我们的R2Coupler光耦可以运作在扩展温度达到125°C。

6、请问:贵公司光耦绝缘耐压多高?谢谢!

我们的门极驱动光耦有不同的封装。每个封装都有其自身的特点 - 如不同的爬电距离和间隙,以配合不同的应用。不同的爬电距离和间隙对应于不同的工作绝缘电压,Viorm。最大Viorm从566V至2262V之间。你可以参考隔离产品选型指南

7、请问:欠压,缺失饱和如何更好的被避免?谢谢!

AVAGO门极驱动光耦带有欠压闭锁 (UVLO)保护功能。当IGBT故障时,门极驱动光耦供电的电压可能会低于阈值。有了这个闭锁保护功能可以确保IGBT继续在低电阻状态。

我们的智能门极驱动光耦, HCPL-316J和ACPL-33xJ,附带DESAT检测功能。当DESAT引脚上的电压超过约7V的内部参考电压,而IGBT仍然在运行中,后约5μs, Fault 引脚改成逻辑低状态, 以通知MCU / DSP。

在同一时间,那1X小粒晶体管会导通,把IGBT的栅极电平 通过RG电阻来放电。由于这种晶体管比实际关断晶体管更小约50倍, IGBT栅极电压将被逐步放电导致所谓的软关机。Avago的应用笔记 AN5324提供更详细的软关断描述。

8、请问:光耦栅极驱动器最高的输出电流是多少?谢谢!

根据您选择的器件型号,Avago的光耦门极驱动器最大输出电流可以达到0.4A,0.6A,1.0A,1.5A,2.5A,3.0A,4.0A 以及 5.0A。你可以参考隔离产品选型指南

9、请问:最大输出电流可以达到多少安培?谢谢!

根据您选择的器件型号,Avago的光耦门极驱动器最大输出电流可以达到0.4A,0.6A,1.0A,1.5A,2.5A,3.0A,4.0A 以及 5.0A。

关键字:功率器件  IGBT 编辑:北极风 引用地址:隔离驱动IGBT等功率器件设计所需要的一些技巧

上一篇:Synopsys和SMIC推出40纳米低漏电工艺DesignWare IP
下一篇:ADI:洞悉市场 以“万变”迎接新挑战

推荐阅读最新更新时间:2023-10-12 23:27

UC3844的多路输出IGBT驱动电源设计
近年来,随着电力电子技术的发展,各个应用领域对电源的体积、重量、效率等方面提出了越来越高的要求。单端反激式变换电路由于具有体积小、重量轻、效率高、线路简洁、可靠性高以及具有较强的自动均衡各路输出负载的能力等优点,非常适合用于设计大功率高频开关电源的辅助电源或功率开关的驱动电源。 开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,在其控制过程中,电源电路中的电感电流未参与控制,是独立变量,开关变换器为二阶系统,而二阶系统是一个有条件的稳定系统;后者是一个电压、电流双闭环控制系统,电感电流不再是一个独立变量,从而使开关变换器成为一个一阶无条件的稳定系统,因而很容易不受约束地得到大的开环增益和完善的小信号、
[电源管理]
UC3844的多路输出<font color='red'>IGBT</font>驱动电源设计
青铜剑科技IGBT驱动方案亮相英飞凌汽车电子季度技术研讨会
    电子报道:日前,由英飞凌主办的“福特-新能源汽车电子相关系统方案专场”技术研讨会 (IATW)在南京福特召开。众多业界同仁分享并交流了英飞凌新能源系统的产品及相关解决方案,青铜剑科技作为英飞凌IGBT驱动方案合作伙伴,也在研讨会上展出了最新的驱动方案。   青铜剑科技与英飞凌深度合作,联合开发了多款功能强大、高可靠性的汽车级IGBT驱动,分别是基于英飞凌HybridPACK™ Drive、HybridPACK™1 DC6和HybridPACK™2封装的IGBT驱动方案。该系列产品具有高精度温度检测以及母线电压隔离采样等功能,兼具高性能和高性价比,极具竞争力。   产品型号:6AP0215T08-HPD   基本
[电源管理]
CPLD在IGBT驱动设计中的应用
    摘要: 介绍了一个实用IGBT驱动信号转换电路的CPLD设计并给出了该设计的仿真波形。     关键词: PWM  CPLD  IGBT  VHDL  自顶向下     随着国民经济的不断发展,变频调速装置的应用越来越广泛。如何打破国外产品的垄断,已成为一个严肃的课题摆在我国工程技术人员的面前。     在某型号大功率变频调速装置中,由于装置的尺寸较大,考虑到结构和散热的条件,主控板上DSP产生的PWM信号需经过较长的距离才能送到IGBT逆变单元中。为保证PWM信号传输的准确性和可靠性,必须解决以下几个问题:首先是抗干扰问题变频器工作时,IGBT的开关动作会产生高频干扰信
[传感技术]
ABI预测RF功率半导体市场有变
  据市场研究机构ABI Research称,大功率半导体市场在未来四年将快速增长,但无线基础业务的重要地位将有所改变。   到2012年,大功率半导体市场收入将达10亿美金。但是据ABI Research无线基础设施研究主管 Lance Wilson说:“这个市场已经被无线基础设施占据了许多年。现在3G/蜂窝无线基础设施部署正在下降,究竟其他产业如何表现的信息很少。   Wilson称产业形成的五年依赖于三个主要问题。“在制造层面,将引进氮化镓(GaN)和碳化硅射频功率器件是否意味着硅LDMOS的消亡?随着移动、3G基础设施市场不断降低,他们是否会像过去一样继续驱动RF功率半导体产业?无线基础设施以外的细分市场是否将
[焦点新闻]
IGBT制作全过程
设计思路:   主变压器用EC-35铁氧体磁芯,初级0.2X20mm铜皮3T+3T,次级0.44漆包线45X4共180T分四段再串联。这样12V输入开环大约有 720V输出。因高压电解选330UF/330v两个串联,高压就设计在稳压600V.保证高压电解的安全。这个变压器将工作在大于100KHZ,主要是发挥小磁芯的功率极限。驱动稳压电路选TL494,过流和欠压保护用双运放完成,12V端用30A保险片接入。整个前级保护完善任意短路电路自锁,保险片不会烧断,免得更换。前级用一对场管推动。   后级频率脉宽由IGBT管控制,独立的隔离DC-DC电路供电。频率脉宽由数字电路生成再由MC33153驱动IGBT。高压工作频率20-
[电源管理]
<font color='red'>IGBT</font>制作全过程
瑞萨电子推出新一代Si IGBT 用于电动汽车逆变器
8月30日,半导体解决方案供应商瑞萨电子公司(Renesas Electronics Corporation)宣布开发新一代Si-IGBT(硅绝缘栅双极晶体管)。该产品体积小且功率损耗低,可用于下一代电动汽车逆变器。 图片来源:瑞萨 根据该公司的计划,2023年上半年,该AE5代IGBT将在瑞萨电子日本Naka工厂的200和300毫米晶圆生产线上量产。2024年上半年,瑞萨电子将开始在其位于日本甲府(Kofu)的新功率半导体300毫米晶圆厂提高产量,以满足市场对功率半导体产品不断增长的需求。
[汽车电子]
瑞萨电子推出新一代Si <font color='red'>IGBT</font> 用于电动汽车逆变器
IGBT构成的交流传动逆变器的设计
电能分为交流电能与直流电能,由交流电能变为直流电能的过程称为整流,由直流电能变为交流电能的过程称为逆变。逆变器就是一种完成直流电能向交流电能变换的装置。 交流电机一般采用交-直-交逆变电源的供电方式,即现在电网提供的交流电通过整流、滤波变成直流电,再通过逆变器将直流电变成所需要的交流电源,给电机供电。因此逆变器是其中较关键的技术装置之一。随着半导体器件的发展,IGBT越来越多的被应用到交流传动技术中。本文主要分析IGBT构成的交流传动用逆变器的主电路结构,包括主电路形式、驱动电路与缓冲吸收保护电路的实现。 1 主电路结构原理图 图1为典型的逆变器结构原理图。它由三部分组成:逆变电路、驱动保护电路、控制与信号采集电路。
[电源管理]
<font color='red'>IGBT</font>构成的交流传动逆变器的设计
​风口上的汽车半导体
汽车行业的这半年,是被“芯片荒”刷屏的半年。前有福特、通用因缺芯减产巨亏,后有特斯拉因芯片供应不足加州工厂暂时停产。2021年,全球车企无不笼罩在芯片短缺的阴影中。 汽车早已不仅仅是由钢铁铸就,更是由硅支撑。 这篇文章,我们挑选出了一些站在时代风口上的汽车半导体予以介绍。它们在眼下,以及不远的将来,会深刻影响汽车行业的命运。 一、MCU MCU(Microcontroller Unit)微控制单元,又名单片微型计算机,俗称单片机。MCU把CPU、内存(RAM、ROM)、计数器以及I/O等多种接口集成到一枚芯片上,形成了一个只有芯片大小,但能完成特定任务的计算控制系统。 MCU的构成形态相对简单,往往只能够胜任某
[汽车电子]
​风口上的汽车半导体
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved