GaN过的了5G基站耗电巨大这座火焰山吗

发布者:EEWorld资讯最新更新时间:2020-01-09 来源: EEWORLD作者: Infineon Technologies首席应用工程师Francesco Di Domenico关键字:GaN  5G基站 手机看文章 扫描二维码
随时随地手机看文章

当前,移动通信领域正在发生巨大变化:第五代蜂窝网络技术(也称为5G)服务在陆续推出。消费者目前已经开始体验5G技术的优势,它不仅能够凭借超快的下载速度与固网宽带匹敌,而且将来还可能在蜂窝网络服务区域内支持更高密度的移动设备和互连的物联网(IoT)设备。

 

这种发展一方面在给消费者带来令人兴奋的好处,但在幕后,业界向5G的转变也充满了挑战、高成本以及其他争议。例如无线电频谱许可的分配[1],关于用户在使用5G时带来的健康风险由于沟通不善而引发恐慌[2]等等,国际贸易竞争对手之间对网络安全的担忧以及产生的后果[3]等问题也在困扰着向5G的迁移过程。

 

毫无疑问,5G对于蜂窝网络和其他运营商而言都将是一项有利可图的业务,但也需要大量的前期投资来升级、改进和替换现有的蜂窝网络基础设施。不仅网络检修的前期成本可能会使网络运营商彻夜难眠,而且还会包括持续发生的运营支出等问题。5G网络比4G将消耗更多的电力,这是一个不可回避的事实。实际上,根据预测,5G的功率消耗将增加近70%(见图1)。例如,一个4G基站可能需要大约7kW的功率,而一个5G基站将需要超过11kW的功率,如果基站需要承载多个信道,其功率消耗甚至可能高达20kW。

 

图1:典型5G通信基站的功率消耗(来源:华为)。

 

所有要求都在提高

 

尽管5G网络通常比第四代通信技术效率更高,但每个小区(cell)由于容量增大将导致整体功率消耗大幅上升。导致这些的原因是由于在每个无线电信道上使用了大规模多输入多输出(Massive MIMO)天线来改善信号质量。与通常使用4T4R(4个发射器,4个接收器)的4G基站相比,5G基站使用64T64R。

 

因此,可以明确地看到为什么5G对电力需求如此之高。一些5G网络提供商在搭建网络和提供服务时对于MIMO苦不堪言,甚至在讨论是否可以将基站的收发器数量降低为32T32R以节省功率,但这样会极大地限制网络容量。

 

除了使现有基站的功率需求增加以外,令问题更加复杂的另一个挑战是需要比以往数量更多的基站。这其中部分原因是由于5G技术特有的无线电波长更加受限,这意味着需要更高的基站密集度才能为特定区域提供有效覆盖。建设这些新基站,并安装支持它们的电网而导致的成本也将是非常高昂。

 

最后,还存在电源问题。即使所需的总功率仅增加一倍,行业标准的3kW 48VDC电源也将严重不足。因此,需要在与现有设备大致相当的空间内显著提高功率密度,以输送所需的更高功率。

 

转向边缘网络

 

随着越来越大强的处理能力转移到实际发生数据收集的边缘网络,5G通信将在网络地图方面发生重大变化(见图2)。不仅需要额外的硬件来实施5G技术,而且各个基站本身也将需要更多的计算能力来支持新一代移动宽带提供的更广泛服务。随着运营商已经开始部署边缘计算,每个基站的电源架构也需要仔细考虑。

 

A close up of a map

Description automatically generated

 

图2:5G生态系统中的开关模式电源(SMPS)。

 

更高功率密度,更少热量?

 

从上述讨论所涉及的观点来看,很明显,未来仍将面临一些艰巨的设计挑战。只有通过提高功率转换的效率,才能支持所需的输入功率,并且有助于在相同的空间内提供更高功率。而实现这一高转换效率的关键在于,将氮化镓(GaN)宽带隙半导体技术与尖端的表面贴装器件(SMD)封装完美地结合。

 

与通孔器件(THD)不同,表面贴装器件直接安装在PCB表面,消除了通孔和引线,并可以在同样空间内实现更多功能,使电路板上有更多可用空间,因而能够提高功率密度。

 

但是,提高功率密度可能是一把双刃剑,因为高功率密度通常带来相应的高热密度。只有在热密度保持不便或尽可能减小的情况下,通过给定区域提供更高的功率才真正有意义。SMD封装在这方面具有显著优势,因为它可以使封装顶部直接与由铝等材料制成的外壳接触来实现冷却,这为热量从晶体管结散发到环境空气提供了一条更短的路径。

 

在表面贴装器件中如果使用传统的硅半导体将无法实现较低的热密度,即使封装技术得到不断改进,并能够提供更好的导热性,硅半导体器件仍将受到工作温度的限制,除非半导体材料能够实现更高效的开关。虽然Si MOSFET已达到效率的上限,但碳化硅(SiC)和GaN等新型宽带隙半导体则能够实现更高的效率。

 

在SMD封装下,GaN具有某些特定的物理特性,与硅器件相比,GaN能够以更高的频率开关更高的功率,并且具有更低的导通电阻(RDS(on))和更低的开关损耗。由于功率转换器可以在更高频率下工作,电路中所需的磁性分立元件数量大幅减少,因此能够简化电源拓扑架构,从而实现更高的功率密度。此外,GaN固有的高效率意味着在大多数情况下可以降低热密度。

 

A close up of a map

Description automatically generated

 

图3:GaN可提供更高的功率密度和更高的转换效率。

 

图3所示为50%负载条件下3kW 48V电源(PSU)所有可能功率密度和效率组合的帕累托分析(Pareto analysis),从中可以看出,与最先进的Si MOSFET解决方案相比,在功率转换解决方案中使用英飞凌的CoolGaN能够实现更高的效率,更高的功率密度,或两者兼而有之。

 

因此,很明显,用SMD封装实现的GaN器件可以完美满足5G网络基础设施的苛刻要求,并且能够使网络运营商即便在最具挑战性的应用场合也可以提供5G的强大功能。 


关键字:GaN  5G基站 引用地址:GaN过的了5G基站耗电巨大这座火焰山吗

上一篇:导通电流密度突破50A/cm2,新型IGBT诞生,made in China
下一篇:SiCrystal将与ST共同推动SiC在车载市场和工业设备市场的普及

推荐阅读最新更新时间:2024-11-10 23:39

Transphorm发布业界首款1200伏GaN-on-Sapphire器件的仿真模型
该器件已准备就绪:为Transphorm的创新常关型氮化镓平台应用于新一代汽车和三相电力系统 加州戈利塔--(2023年5月31日)-- 高可靠性、高性能氮化镓(GaN)电源转换产品的先锋企业和全球供应商Transphorm, Inc. (Nasdaq: TGAN)宣布推出其1200伏功率管仿真模型及初始规格书 。TP120H070WS功率管是迄今为止推出的唯一一款1200伏GaN-on-Sapphire功率半导体,领先同类产品。这款产品的发布展现Transphorm有能力支持未来的汽车电力系统,以及已普遍用于工业、数据通信和可再生能源市场的三相电力系统。与替代技术相比,这些应用可受益于1200伏氮化镓器件更高的功率密度
[电源管理]
Transphorm发布业界首款1200伏<font color='red'>GaN</font>-on-Sapphire器件的仿真模型
尽管行业整合,GaN(氮化镓)设备供应链依然强劲
RFMD和TriQuint的合并、英飞凌收购International Rectifier和Wolfspeed,恩智浦(NXP)收购飞思卡尔(Freescale),即使近期这类并购新闻铺天盖地,但GaN设备供应链依旧增长,并显示出多元化。 Strategy Analytics高级半导体应用(ASA)服务发布的最新研究报告《2015年GaN供应链公司概述》列出了37家为RF(射频)和电子电力应用制造GaN设备的厂商。该报告研究了这些厂商在2015年的收益、工序、设施、产品和新闻发布,并针对这些公司GaN发展的未来潜在客户提供洞察。该报告同样涵盖了2015年RF GaN营收的市场份额。 Strategy Analytics高级
[半导体设计/制造]
中国移动:5G套餐用户突破5000万!基站已建12.4万座
在中国移动5G生态合作伙伴大会上,中国移动公布了目前5G建设进展。 截至目前,中国移动已建成5G基站12.4万个,覆盖56个城市,发展5G套餐客户突破5000万,成为全球5G网络覆盖最广、5G客户规模最大的通信运营商。 对于2020年5G发展规划,中国移动表示在网络建设方面,2020年,中国移动将实现全国地市以上城区5G网络覆盖,5G套餐客户净增7000万;努力推进5G SA全国商用、实现5G特色能力;计划协同产业链合作伙伴发展5G套餐用户突破1亿户,拉动行业实现5G终端销售1亿部,打造100个集团级应用示范,10000个省级区域特色项目;聚集14个垂直行业,打造百个有行业影响力、有复制推广性的5G示范应用。 同
[网络通信]
中国移动:<font color='red'>5G</font>套餐用户突破5000万!<font color='red'>基站</font>已建12.4万座
国产5G通信基站GaN芯片计划2019年正式推出
随着国内外电信运营5G服务纷纷铺开,5G的角逐正在不断加速。在10日揭幕的2018中国国际应用科技交易博览会上,国产5G通信基站GaN(氮化镓)功率放大器芯片,在中国发明成果转化研究院展区对外亮相。该研究院有关负责人透露,GaN芯片已完成多款产品设计,并已获得中电集团客户认证成功,计划2019年正式推出,将可全面满足中国5G通信基站对射频功率放大器的需求,未来可望实现人与人乃至物联网、生产机器人、无人驾驶“实时无线电通信”。据悉,此举亦打破国外对高性能GaN器件实行对华禁运之垄断。 在2018中国国际应用科技交易博览会上,GaN功率放大器芯片对外亮相。(方俊明 摄) “GaN是第三代半导体的代表材料。”中国发明成果转化研
[网络通信]
国产<font color='red'>5G</font>通信<font color='red'>基站</font><font color='red'>GaN</font>芯片计划2019年正式推出
国内最大规模5G智能电网建成,应用5G基站削峰填谷供电
中国储能网讯: 2020年7月11日,中国电信宣布由国网青岛供电公司、中国电信青岛分公司和华为公司联合开发的青岛5G智能电网项目一期工程正式交付投产,这标志着目前国内规模最大的5G智能电网正式建成。中国电信表示,后续将继续与合作伙伴一同推动其他应用场景落地,让5G智能电网更好地服务于社会生产和人们的生活。 青岛5G智能电网项目采用端到端5G SA网络建设,引入5G全自动多维动态切片解决方案,结合5G MEC无处不在的联接能力和超性能异构计算能力,为电网应用提供更快、更细、更准的差异化和确定性网络能力,实现了基于5G SA切片的智能分布式配电、变电站作业监护及电网态势感知、5G基站削峰填谷供电等新应用。工作人员通过电力塔杆上
[新能源]
最新Qorvo®技术支持更高性能的GaN分立式LNA和驱动器
中国,北京 2016年11月03日 实现互联世界的创新RF解决方案提供商Qorvo, Inc.(纳斯达克代码:QRVO)今天发布了一系列六款全新的氮化镓(GaN)芯片晶体管---TGF2933-36和TGF2941-42,新产品的高频性能更出色,噪声更低,这对先进的通信、雷达和国防RF系统应用而言甚为关键。 该系列的这六款全新GaN晶体管及其相关模型的制造工艺采用了业内独有的Qorvo 0.15um碳化硅基氮化镓(SiC)工艺 QGaN15。QGaN15工艺令晶体管工作频率高达25 GHz,支持芯片级设计,通过K频段应用提供频率更高且经济高效的分立式技术。 Qorvo高性能解决方案事业部总经理Roger Hall表示:
[电源管理]
最新Qorvo®技术支持更高性能的<font color='red'>GaN</font>分立式LNA和驱动器
GaN功率IC为笔电打造最小USB-PD电源转换器
尽管笔记型电脑的设计日趋轻薄简约,但对于使用者而言,最大的困扰是必须随身携带的庞大电源转换器却仍然像“砖头”一样重。如今,在氮化镓(GaN)技术的进展下,很快地就能在市面上看到重量与尺寸大幅缩小、充电速度更快的电源转换器了... 尽管笔记型电脑的设计日趋轻薄简约,但对于使用者而言,最大的困扰是必须随身携带的庞大电源转换器却仍然像“砖头”一样重。如今,在氮化镓(GaN)技术的进展下,很快地就能在市面上看到重量与尺寸大幅缩小、充电速度更快的电源转换器了。 纳微半导体(Navitas Semiconductor)近日推出号称全球最小的65W USB-PD电源转换器参考设计,可用于打造体积与重量均较矽基半导体设计大幅缩小5倍的电源
[半导体设计/制造]
电动汽车市场将被GaN器件改变?
随着全球能源结构向低碳能源和节能运输转移,节能汽车产业面临着挑战。如今,整个 电动汽车 (EV)市场的增长率已经超过传统内燃机(ICE)汽车市场增长率的10倍。预计到2040年,电动汽车市场将拥有35%的新车销量份额,对于一个开始批量生产不到10年的市场而言,这样的新车销售份额是引人注目的。 随着整个汽车行业从基于机械系统向数字系统转变,电池、电子系统及系统组件创新相结合的经济规模,对电动汽车的增长起到了至关重要的作用。电动汽车制造商和设计人员青睐于数字设计,而Canaccord Genuity预计,到2025年,电动汽车解决方案中每台汽车的半导体构成部分将增加50%或更多。本文将探讨氮化镓( GaN )电子器件,也涉及到一点碳化
[嵌入式]
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved