为了实现更小、更快、更节能,芯片制造经历了什么?

发布者:EE小广播最新更新时间:2022-05-09 来源: EEWORLD关键字:芯片  数字化  晶体管 手机看文章 扫描二维码
随时随地手机看文章

为了实现更小、更快、更节能,芯片制造经历了什么?


 image.png


每隔几个月就会有更新换代的电子产品问世。它们通常更小、更智能,不仅拥有更快的运行速度与更多带宽,还更加节能,这一切都要归功于新一代先进的芯片和处理器。


跨入数字化时代,我们如同相信太阳明天一定会升起那样,确信新设备会不断地推陈出新。而在幕后,则是工程师们积极研究半导体技术路线图,以确保新设备所需的下一代芯片能够就绪。


很长一段时间以来,芯片的进步都是通过缩小晶体管的尺寸来实现的,这样就可以在一片晶圆上制造更多晶体管,从而使晶体管的数量在每12-24个月翻一番——这就是众所周知的“摩尔定律”。多年来,为了跟上时代的步伐,整个行业进行了诸多重大的创新,包括铜/低k互连、新型晶体管材料、多重图形化方案和三维(3D)架构。


开发3D结构的转变带来了新的挑战,随着深宽比的增加,挑战也在加剧。你可能已经想到,3D架构需要从器件设计上做根本性改变,需要新的材料、新的沉积和刻蚀方法来实现。在本文中,我们将带大家一起回顾半导体行业在实现3D架构过程中的重要里程碑。


准备阶段:平面工艺


创建集成电路最初是一个二维的问题:取一块平坦的硅片,在表面放置各种结构,用导线将它们连接起来。这是通过沉积一层层的材料,利用光刻技术对其进行图形化处理,并在暴露的区域刻蚀出必要的特征来完成的。这曾是电子工业的一个巨大突破。


随着技术需求的不断发展,需要在更紧凑的空间中构建更多的电路,以支持更小的结构。过去相对直接的过程变得越来越复杂。


随着创建2D结构的成本不断增加,以及在二维平面上进行微缩的可行方法逐渐枯竭,3D结构变得越来越有吸引力。半导体行业早在十多年前就开始开发早期的选择性刻蚀应用以支持3D技术,并不断扩展,从封装到非易失性存储器甚至晶体管本身。


 image.png


晶体管走向3D


许多电子系统的主力都是晶体管。在过去,晶体管一直是扁平结构,其特性由晶体管通道的宽度和长度决定。晶体管性能由放置在通道上的栅极控制,不过这只能提供有限的控制,因为通道的另一边和底部不受控制。


从平面转向3D的第一步是为通道设计一个鳍,它可以由三面的栅极控制。不过,为了实现最优控制,需要接触到晶体管的所有四面,因而推动了全包围栅极(GAA)晶体管的发展。在GAA结构中,多根导线或多个薄片相互堆栈在一起,栅极材料完全包围着通道。


 image.png


闪存提升


向3D的转变早在10年前就被应用于NAND闪存,当时内存位的水平字符串是向上堆栈的。


垂直结构由交替的薄层材料和尽可能多的工艺层堆栈而成。在构建这样的结构时,至少在两方面需要特别小心:第一,每一层都必须厚度均匀,并且非常平整,使每层中的位都与其他位具有相同的尺寸;第二,各层必须相互连接——这需要先建构一层堆栈并通过刻蚀在堆栈中进行钻孔,然后用适当的连接材料来填充这些孔,从而完成这样的结构。这其中,无论是刻蚀还是沉积工艺都极具挑战性,需要精确的执行。


这些挑战限制了堆栈的层数,因此需要采用新的方法来增加层数。


 image.png


展望未来:3D DRAM


动态随机存取存储器(DRAM) 的物理机制与3D NAND完全不同,所用的方法也做了彻底的改变。


DRAM需要高容量的电容器,这对于在2D阵列中进行精确构建是一个挑战。垂直堆栈的难度更大,还需要更多研发以找到经济的方法来将电介质和活性硅堆栈在一起。光刻可能需要同时影响多层——目前还没有可量产的工艺。


3D封装越来越受欢迎


芯片经过封装后被放置在印制电路板(PCB)上。在过去,封装只是为了保护脆弱的硅芯片,并将其连接到电路板上。如今,封装通常包含多个芯片,随着缩小芯片占用空间的需求提升,封装也开始转向3D。


3D封装要求芯片被堆栈起来,这涉及到芯片之间的密集连接——这种连接可以提高信号速度,因为它们短得多,又可以同时传输更多信号。然而,在两个以上芯片的堆栈中,其中一些信号还需要通过传导通道连接到堆栈更高的芯片,这些通道被称为“硅通孔”(TSVs)。


 image.png


3D芯片堆栈重要的终端市场应用一直在内存领域——高带宽内存 (HBM) 是最为常见的。内存芯片还可以被堆栈到CPU或其他逻辑芯片上,以加快从内存中获取数据的速度。


如今,3D是微缩的必要条件


在解决半导体制造中的所有微缩限制时,考虑3D已成为标准做法。虽然3D可能不是解决所有问题的选择,但它在上述应用中特别有用。


每一个新的应用都伴随着如何构建的难题,这需要创新的思维和硅工艺领域的持续发展,半导体制造设备就是芯片行业不断实现3D结构的主要推动者。


关键字:芯片  数字化  晶体管 引用地址:为了实现更小、更快、更节能,芯片制造经历了什么?

上一篇:泰瑞达与中国高校联合开展课程,以实际行动为中国培养集成电路测试人才
下一篇:美光官宣232层3D TLC NAND闪存 2022下半年开启生产

推荐阅读最新更新时间:2024-10-22 09:37

采用DDS技术与AD8302芯片实现了数字化频率特性测试仪的设计
传统的频率特性测试仪不仅价格昂贵,且得不到相频特性,更不能保存频率特性图和打印频率特性图,也不能与计算机接口,给使用者带来了诸多不便。而本文采用DDS技术作为扫频信号源;同时采用了集成模拟芯片AD8302对幅度和相位进行检测,用DSP芯片TMS320VC5409和CPLD芯片EPM7128进行测量控制和数据处理,人杌接口部分是利用单片机AT89C51实现,并配有打印机接口和串行通信接口。 1 系统总体方案设计 频率特性测试系统一般包含测试信号源、被测网络、检波及显示3个部分。本系统根据所要完成的测试功能及技术指标,该系统应由扫频源、幅度相位测量电路、控制及运算部分、人机接口单元几部分组成。系统总体方框图如图1所示。 信号源
[单片机]
采用DDS技术与AD8302<font color='red'>芯片</font>实现了<font color='red'>数字化</font>频率特性测试仪的设计
高性能数字化电源芯片的新标尺——InnoSwitch4-Pro
电源适配器不断提升的快充性能,已经成为各大品牌手机的性能亮点,不断提升的性能背后是支持手机快充的电源适配器芯片的不断创新。 PI最新推出的InnoSwitch4-Pro就是高性能数字化电源芯片的新标尺。从InnoSwitch3-Pro,到InnoSwitch4-CZ再到InnoSwitch4-Pro,可实现的最高输出功率从100W提升到220W,其漏极峰值极限电流也从14A增加到26A,最大次级开关频率从145kHZ提升到了194kHz。 InnoSwitch4-Pro延续了InnoSwitch4-CZ的众多优点,集成一系列最新创新技术,引入具有多种智能保护功能的架构革新的控制引擎,更加拓展了对外部电路的适应性。在
[电源管理]
高性能<font color='red'>数字化</font>电源<font color='red'>芯片</font>的新标尺——InnoSwitch4-Pro
欧洲半导体数字化新目标:发起 2nm 芯片总攻
欧盟委员会提出数字化转型最新目标:到 2030 年,欧洲先进和可持续半导体的生产总值至少占全球生产总值的 20%,生产能力冲刺 2nm,能效达到今天的 10 倍。 此外,欧盟计划在 5 年内造出其第 1 台量子加速计算机,10 年内实现 5G 覆盖欧洲人口密集地区、独角兽企业数量翻倍、关键公共服务和远程医疗服务 100% 全覆盖。 这项 27 页的欧盟计划名为《2030 数字指南针:数字十年的欧洲方式(2030 Digital Compass: the European way for the Digital Decade)》,旨在将欧盟提出的 2030 年数字目标转化为具体目标,并确保它们能够实现。 欧盟在文件
[半导体设计/制造]
欧洲半导体<font color='red'>数字化</font>新目标:发起 2nm <font color='red'>芯片</font>总攻
基于ARM7和MX618芯片实现无中心呼叫控制协议数字化系统设计
引 言 无中心移动通信系统是我国专业移动通信系统的重要组成部分。它使用单工对讲方式工作,工作频率在915.012 5~916.087 5 MHz之间。该系统具有无中心组网、数字选呼、自动接续、多址用户多信道共用、链路分散控制等诸多技术特点,拥有广阔的实际应用前景和深入开发潜力。该系统网络结构图如图1所示。目前我国的900 MHz无中心移动通信系统尚处在以模拟话音加数字信令为主导技术的模拟阶段。针对无中心呼叫控制协议的数字化研究尚处于空白。 无中心系统的数字化是将语音和控制信令进行数字化编码,以二进制码流形式传播。本系统平台使用CML公司MX618芯片进行语音编码,MX7041芯片对语音和信令进行4FSK基带调制,ARM7处理器
[单片机]
基于ARM7和MX618<font color='red'>芯片</font>实现无中心呼叫控制协议<font color='red'>数字化</font>系统设计
英伟达GPU弱爆了!世界第一AI芯片升级4万亿晶体管、90万核心
3月14日消息,Cerebras Systems发布了他们的第三代晶圆级AI加速芯片“WSE-3”(Wafer Scale Engine 3),规格参数更加疯狂,而且在功耗、价格不变的前提下性能翻了一番。 2019年的第一代WSE-1基于台积电16nm工艺,面积46225平方毫米,晶体管1.2万亿个,拥有40万个AI核心、18GB SRAM缓存,支持9PB/s内存带宽、100Pb/s互连带宽,功耗高达15千瓦。 2021年的第二代WSE-2升级台积电7nm工艺,面积不变还是46225平方毫米,晶体管增至2.6万亿个,核心数增至85万个,缓存扩至40GB,内存带宽20PB/s,互连带宽220Pb/s。 如今的第三代WSE-3
[半导体设计/制造]
告别晶体管迎来忆容器,AI芯片可用电场而非电流执行计算
运行生成式人工智能(AI)系统不仅硬件成本高昂,而且会带来惊人的能源消耗。据科技网站TechCrunch报道,总部位于德国的初创公司塞姆龙最新开发出一种创新的AI芯片设计方法,率先使用新的神经网络控制设备——忆容器为其3D芯片供电。这有可能彻底改变节能计算技术,使消费电子设备更容易获得先进的AI功能。 不同于处理器中的晶体管,塞姆龙的芯片使用电场而不是电流。这些由传统半导体材料制成的忆容器可存储能量并控制电场,不仅提高了能源效率,还降低了制造成本,使消费电子产品更容易运行先进的AI模型。 塞姆龙芯片是一种多层组织结构,核心原理是电荷屏蔽,通过屏蔽层控制顶部电极和底部电极之间的电场。屏蔽层由芯片内存管理,可存储AI模型的各种“权重”
[半导体设计/制造]
台积电首提 1nm A10 工艺,计划到 2030 年实现 1 万亿晶体管的单个芯片封装
12 月 28 日消息,据 Tom's Hardware 报道,在本月举行的 IEDM 2023 会议上,台积电制定了提供包含 1 万亿个晶体管的芯片封装路线,这一计划与英特尔去年透露的规划类似。 当然,1 万亿晶体管是来自单个芯片封装上的 3D 封装小芯片集合,但台积电也在致力于开发单个芯片 2000 亿晶体管。 为了实现这一目标,该公司重申正在致力于 2nm 级 N2 和 N2P 生产节点,以及 1.4nm 级 A14 和 1nm 级 A10 制造工艺,预计将于 2030 年完成。 ▲ 图源 Tom's Hardware 获取到的台积电 PPT 此外,台积电预计封装技术(CoWoS、InFO、SoIC 等
[半导体设计/制造]
固态热晶体管超高速精确控制热量,开辟计算机芯片热管理新领域
美国加州大学洛杉矶分校研究人员推出了首个稳定的全固态热晶体管,它使用电场来控制半导体器件的热运动。据11月3日发表在《科学》杂志上的研究,该晶体管具有迄今最高的速度和性能,通过原子级设计和分子工程,可开辟计算机芯片热管理的新领域。这一进展还有助于了解人体如何调节热量。 固态热晶体管通过电场控制热运动。 图片来源:胡永杰实验室/加州大学洛杉矶分校 论文合著者、加州大学洛杉矶分校工程学院机械和航空航天工程教授胡永杰表示,精确控制热量如何流经材料,长期以来一直是物理学家和工程师的梦想。这种通过电场的开关来管理热运动的新设计原理,朝这个方向迈出了一大步。 新型热晶体管具有场效应(通过施加外部电场来调制材料的热导率)和全固态(无移动部
[半导体设计/制造]
固态热<font color='red'>晶体管</font>超高速精确控制热量,开辟计算机<font color='red'>芯片</font>热管理新领域
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved