基于ATmega48的三相无刷电机控制方法

发布者:陈熙琼最新更新时间:2009-01-19 来源: 国外电子元器件关键字:ATmega48  无刷直流电机  功率驱动 手机看文章 扫描二维码
随时随地手机看文章

1 引言
      无刷直流电机以其重量轻,体积小,加速性能好,运行平稳,噪音低等优点而广泛用于丁业和民用产品中。无刷直流电机的功率因数高,无转子损耗,其转子转速能严格地与电源频率保持同步。转子磁场由永久磁铁产生。通常,采用电压源型脉宽调制(PWM)控制作为无刷直流电机调速系统用的驱动器。近年来,国外纷纷推出以单片机(MCU)为核心的单片电机控制器,它南一个MCU再配备外围驱动电路构成,能大大降低成本,缩小体积,紧凑结构,提高可靠性。在此,介绍r采用Atmega48单片机实现三相无刷直流电机控制器的方法。


2 ATmega48单片机
      ATmega48单片机是Atmel公司基于自动电压调整器(Automatic Voltage Regulator,简称AVR)增强型精简指令集计算机(RISC)结构的低功耗8位CMOS微控制器。具有先进的指令集及单时钟周期指令执行时间,其数据吞吐率可以达到1 MIPS/MHz。AVR内核具有丰富的指令集和32个通用工作寄存器。这些寄存器都直接与算术逻辑单元(ALU)相连接.可在一个时钟周期内通过一条指令同时访问两个独立的寄存器,因此可提高代码效率。
      ATmega48的硬件资源有:4 KB的系统内可编程Flash:256字节的EEPROM:512字节的SRAM;23个通用I/0口线;32个通用工作寄存器;2个带独立预分频器和比较器的8位定时器/计数器;1个带预分频器、比较器和捕捉功能的16位定时器/计数器;带独立振荡器的实时计数器;6个通道PwM;8路10位A/D转换器;6路10位A/D转换器;可编程的串行USART接口;可工作于主机/从机模式的SPI串行接口;面向字节的2线串行接口;独立片内振荡器的可编程看门狗定时器;片内模拟比较器及5种可通过软件选择的省电模式。ATmega48具有丰富的I/0口、A/D转换器、定时器/计数器、PWM通道等资源,为实现三相无刷直流电机的控制、换相检测等提供了方便。

3 三相无刷电机的控制实现方法
     
图1示出采用ATmega48单片机实现三相无刷电机控制器的原理图。图中,PC0、PCI和PC2为输入,用以接收来自电机U,V,W换相的霍尔传感器检测信号;PD5和PD6用于控制电机U相的功率驱动器件;PBl和PB2用于控制电机V相的功率驱动器件;PD3和PB3用于控制电机W相的功率驱动器件;PC3为电机给定转速的输入电压。

      作为一种同步电机,直流无刷电机的转子转速受定子旋转磁场速度及转子极数的影响。当转子的极数固定时,只要改变定子的旋转磁场频率,即可改变转子的转速。直流无刷电机是一种控制定子的旋转磁场频率,并将电机转子转速回馈控制中心进行反复校正.以达到接近直流电机的特性。当负载变化时,它能在额定负载范围内控制电机的转子维持一定的转速。
      图2给出用于图1中的功率驱动电路。该驱动部分由上臂VQl,VQ3,VQ5和下臂VQ2,VQ4,VQ6的6个功率晶体管组成,用于连接电机作为控制流经电机绕组的开关。控制部分提供PWM,用于决定功率晶体管开关频率及换相的时刻。在控制直流无刷电机转速时.通常希望在负载变化时也能使电机转速稳定在设定值内,而不发生太大的波动。因此,在无刷电机内部设置霍尔传感器.以感应磁场变化,该传感器既可作为电机转速中闭环控制的速度反馈部件,也可作为相序控制的依据。

      当控制器工作时,可根据霍尔传感器检测到电机转子的当前位置,依照定子绕组决定开启或关闭功率晶体管的顺序,使电流依序流经电机线绕组,以产生顺向或逆向的旋转磁场,并与转子的磁铁相互作用,使电机顺时或逆时转动。当电机转子转动到霍尔传感器检测出另一组信号的位置时,再开启下一组功率晶体管,如此循环,电机就能依据同一方向继续转动,直到控制器决定使电机转子停止时,则关闭功率晶体管;决定使电机转子反向时,则开启功率晶体管,但顺序相反。PWM是决定电机转速快或慢的方式,如何产生PWM是实现准确控制速度的核心。
      图2中的开关器件采用MOSFET,它们是不能在关断瞬间切换的。如果UH和UL是反向信号,那么,在同一时刻,一个开关器件导通,另外一个开关器件截止。在这段过渡时期,会有一个短暂的时间,其中一个开关器件并未完全截止,而另一个也是导通的,这样会使电源与地直接连接,使得大电流流经晶体管。在工程应用中必须避免这种情况,因为若电路中没有必要的硬件保护,极有可能损坏驱动装置。因此,在控制电路中,每个PWM过渡期都应增加死区时间。要求在一个很小的时间内,上臂开关和下臂开关都不导通,即产生带死区的PWM信号。
      图3示出采用ATmega48形成带死区时间的PWM信号原理。ATmega48中定时器/计数器的双斜率模式可产生带死区时间的PWM信号,它能产生一个关于B0TTOM对称的波形。图3中三角线表示双斜率相位修正模式下定时器/计数器T0的计数值。在向上计数时,当计数值与没定值匹配时,输出引脚OCOA清0;在向下计数时,当计数值与设定值匹配时,输出引脚OCOA置l。输出引脚OCOB也采用同样的设置。PWM占空比则通过输出比较寄存器OCROA和输出比较寄存器OCROB来设置;A,B两路PWM相位的输出相反。当设置的两个输m端比较值相同时,这两个PWM的输出互补。

      为了在上臂开关与下臂开关切换时插入死区时间,必须改变0CROB和OCROA的比较值,两者之差值为插入的死区时间。如果3个计时/计数器都采用同样的设置,就可产生3对带死区的PWM波形,但必须保证PWM的输出是同步的。当采用8位定时器/计数器产生2路具有不同比较值的PWM信号时,其最大设定值为255。若采用16位定时器/计数器,则必须设定为8位相位修正PWM模式。此时,PWM的基本频率可由下式确定:

   
式中:fCPU为CPU的频率。
      无刷直流电机常采用三相正弦驱动方式。常用的方法是把一个正弦波形数据存储在存储器中,通过程序查表输出所需的正弦驱动信号。由于3个正弦电压之间的相位差为120°,因此可以采用一个正弦波形移位产生所有的正弦驱动信号。图4给出各相驱动信号的产生机制和换相时序。图中Hl,H2,H3为霍尔传感器的输出状态;S1~S6为波形产生的步骤;虚线为相位切换波形;实线为输出的正弦驱动信号。图5给出用于控制器的换相控制程序设计流程。 

4 结语
      无刷直流电机的功率因数高,又无转子损耗,因此用于无刷直流电机调速系统的驱动器大都采用电压源型PWM控制。由于三相无刷直流电机借助ATmega48单片机进行控制.且通过软件实现了带死区的PWM、霍尔传感器的换相处理、正弦驱动信号的产生和电机的转速控制,因而所需的外围器件少,成本低,并且还可提高系统的可靠性。

关键字:ATmega48  无刷直流电机  功率驱动 引用地址:基于ATmega48的三相无刷电机控制方法

上一篇:基于AVR单片机Megal6的电子时钟设计
下一篇:可编程数字电位器在AVR单片机中的应用

推荐阅读最新更新时间:2024-03-16 12:24

三相无刷直流电机是什么
  三相无刷直流电机   无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。早在十九纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机得到了广泛的应用。但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢。上世纪中叶诞生了晶体管,因而采用晶体管换向电路代替电刷与换向器的直流无刷电机就应运而生了。这种新型无刷电机称为电子换向式直流电机,它克服了第一代无刷电机的缺陷。   无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传统的接触式换向器和电刷。它具有可靠性高、无换向火花、机械噪声低等优点
[嵌入式]
恩智浦最新高功率LED驱动芯片--SSL4120
恩智浦在2012年香港秋季灯饰展上展出了新推出的恩智浦 SSL4120,这是一款集成功率因数校正 (PFC) 的 GreenChip™ 半桥谐振控制器,可支持最高达400W的高功率 LED 应用,目前已量产,样品也即将面市。SSL4120 完全支持市电应用,支持直接从整流后的通用市电电压 90至305伏范围内高效启动。SSL4120 支持低于 10% 的低总谐波失真 (THD),高于 0.97 的高功率因数 (PF)和 380 kHz 的典型 PFC 频率,满足并超过了高功率 LED 照明应用的传统要求。SSL4120可广泛使用于高功率 LED 应用,例如办公照明、商场照明、高棚和低棚照明、停车场照明、广场照明和街道照明。
[电源管理]
恩智浦最新高<font color='red'>功率</font>LED<font color='red'>驱动</font>芯片--SSL4120
TI针对汽车与通用照明推出高功率LED驱动
德州仪器(TI)宣布推出一款高功率多拓朴 DC/DC LED 驱动器,可调节开关频率与电流感应阀值,高度设计弹性与低电磁干扰(EMI),适合汽车车头灯、雾灯及一般通用照明等应用。该 TPS92690 是一款支援低侧电流感应的 N 通道 MOSFET 控制器,支援升压或升降压LED驱动器拓朴,如SEPIC、Cuk、返驰式拓朴等。   TPS92690 DC/DC LED 控制器丰富特性,可为设计人员大幅提升系统设计弹性。例如可调整开关频率最高达 2 MHz ,与电流感应阀值,可帮助设计人员最佳化 LED 驱动器,实作小型、高效率或两者兼具的电子产品。独立脉宽调变 (PWM) 及类比输入与通用调光控制方法结合,可调节 LED 电流或提供
[电源管理]
基于单片机的无刷直流风扇电机180°正弦波控制
目前的变频风扇一般采用无刷直流电机,因其无励磁绕组、无换向器、无电刷、无滑环,结构比一般传统的交、直流电动机简单,运行可靠,维护简单。与鼠笼型感应电动机相比,其结构的简单程度和运行的可靠性大体相当,但由于没有励磁铁耗和铜耗,功率在300W以下时,其效率比同规格的交流电机高10%~20%。 无刷直流电机一般采用方波驱动,采用霍尔传感器采样转子位置,以此为基准信号控制绕组强制换相。这种方案控制方法简单,成本低,在目前电动车方案中应用广泛。但由于方波驱动换相时会出现电流突变,导致转矩脉动较大,转动不平稳,噪声指标较差,难以在家电应用领域推广。而正弦驱动可以避免换相时的电流突变,虽然最大转矩会降低,但在噪声指标上有明显的优势。
[工业控制]
LED灯高功率因数驱动器的设计方案
随着LED灯在众多领域里的应用,譬如商业照明和家庭照明,LED照明已全面有取代传统白炽灯和荧光灯之势,因为相比传统照明,LED照明尽管在价格上偏贵于传统照明,但它具备节能,光效高,寿命长,无污染等显着优点,所以,LED照明能在短时内被市场认同。另外,随着能源资源无节制地消耗,带有节能性能的照明产品已受到政府组织的推广,一些国家的能源组织也有发布相关政策,补贴满足其标准的照明产品。如商业照明产品功率因数大于0.9,家用大于0.7就是美国能源之星的强制要求之一。所以在关注LED灯高光效,长寿命特点的同时,在保证低元器件成本的前提下,设计出具有高功率因数且性能高可靠LED驱动方案变得尤为重要。 1 LED照明的发展概述 消费者从传统照明
[电源管理]
LED灯高<font color='red'>功率</font>因数<font color='red'>驱动</font>器的设计方案
无刷直流电机的基本工作原理
无刷直流电机简介 无刷直流电机,英语缩写为BLDC(Brushless Direct Current Motor)。 电机的定子是线圈,或者叫绕组。 转子是永磁体,就是磁铁 。 根据转子的位置,利用单片机来控制每个线圈的通电,使线圈产生的磁场变化,从而不断在前面勾引转子让转子转动,这就是无刷直流电机的转动原理。 下面深入一下。 无刷直流电机的结构 首先先从最基本的线圈说起。 如下图。 可以将线圈理解成长得像弹簧一样的东西。 根据初中学过的右手螺旋法则可知,当电流从该线圈的上到下流过的时候,线圈上面的极性为N,下面的极性为S。 现在再弄一根这样的线圈。 然后摆弄一下位置。 这样如果电流通过的话,就能像有两个电磁铁一样。
[嵌入式]
<font color='red'>无刷直流电机</font>的基本工作原理
简化低功率照明驱动的汽车 LED 驱动
Diodes 公司 (Nasdaq:DIOD) 为领先业界的高质量特定应用标准产品全球制造商与供货商,其产品涵盖广泛领域,包括独立、逻辑、模拟及混合讯号半导体市场。该公司扩展其在汽车  LED 驱动器 系列,推出 BCR4xxUQ 系列,以简化 低功率 照明的驱动。LED 技术正在取代汽车使用的传统灯泡:包括从侧灯、迎宾灯、踏板灯等外部照明,到车顶灯、环境灯、仪表板灯及按钮背光等内部照明。BCR4xxUQ 系列专为符合这些应用需求而打造,提供简单、小巧、灵活的方式以驱动低功率 LED 灯条。   BCR4xxUQ 系列中的每个装置都能提供默认的电流输出,不需要任何外部组件,或者也能提供介于 10mA 与 100mA (BCR401
[嵌入式]
利用2SD315AI设计的驱动功率IGBT原理
IGBT常用的驱动模块有TLP250,以及EXB841/840系列的驱动模块。但在燃料电池城市客车DC/DC变换器的研制过程中发现,由于车载DC/DC变换器常常工作在大功率或超大功率的状态中,而处在这种状态下的IGBT瞬时驱动电流大,要求可靠性要高,使得传统的驱动电路已经不能满足其使用要求,经过研究分析,选用瑞士CONCEPT公司生产的用于驱动和保护IGBT或功率MOSFET的专用集成驱动模块2SD315A作为大功率IGBT(800A/1200V)的驱动器件,该驱动器集成了智能驱动、自检、状态反馈、DC/DC电源及控制部分与功率部分完全隔离等功能于一体。经过车载90kW DC/DC变换器实际道路工况运行实验表明,效果良好。  
[电源管理]
利用2SD315AI设计的<font color='red'>驱动</font>大<font color='red'>功率</font>IGBT原理
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved