CJ系列交流接触器以价格便宜及使用寿命长的优势,广泛应用于低压配电,但在运行当中电能损耗大,噪音大,并且经常烧毁线圈。本文针对交流接触器运行噪声大,耗电高,线圈铁心运行温度高,易烧毁的难题,设计了一款适合CJ系列交流接触器的节电器,主要是采用单片机PICl2F508控制可控硅的导通角,也就是控制加在负载(交流接触器线圈)上的电压波形,从而实现交流接触器的大电流直流吸合,低压小电流维持运行,达到无声节能的目的。
1 电路工作原理
图1是交流接触器的原理框图,主要由220 V交流电输入、可控硅、单片机控制电路和负载等组成。单片机控制电路主要是控制可控硅的导通时间。最终加在负载(交流接触器线圈)上的电压波形如图2所示。
在t=0~T1期间,可控硅的导通角是180°,加在交流接触器线圈上的电压波形是脉动的直流正弦半波,线圈获得大电流,接触器吸合。当t>T1后,通过单片机控制可控硅的导通时间为时间很短的T,加在交流接触器线圈上的电压波形是直流窄脉冲波,刚好能使接触器维持在吸合状态。实践证明,T1取60 ms就能使接触器可靠地吸合;T取2 ms,就能使接触器可靠地维持在吸合状态。通过单片机,能够精确地控制时间T1和T。
2 系统设计
2.1 硬件电路设计
2.1.1 单片机PIC12F508介绍
PICl2F508是Microchip Technology生产的低成本高性能8位全静态的基于闪存的CMOS单片机,总共只有8个管脚。它们采用RISC架构,仅有33条单字/单周期指令。除程序跳转指令(为两个周期)外的所有其他指令都是单周期(200 ns)的。PIC12F508本身自带上电复位(POR)和内部振荡模式(INTRC),使器件不再需要外部复位电路和晶振,降低了产品的开发成本。
2.1.2 过零检测电路
为了确保利用单片机对可控硅的可靠控制,必须准确地判断220 V交流电压的过零点。综合各个方面的考虑,本文采用光耦P521完成过零点的检测,如图3所示。220 V经过120 kHz的电阻降压后,加载到光耦的输入端,光耦的输出端接到PICl2F508的端口GPl。当交流220 V的零点来到时,光耦第四管脚没有信号输出。
2.1.3 可控硅驱动电路
可控硅选用BTl51,根据BT151的参数,单片机的高电平输出就可以直接驱动BTl51,为了保护单片机,防止220 V电压串入单片机,在控制端连接了一个二极管。如图4所示。
2.2 软件设计
在MPLAB-IDE中使用Hitech C编译器,最终用C语言完成节电器的软件设计。
过零点判断子程序如下:
2.3 交流接触器电磁线圈改造
2.3.1 交流接触器电磁线圈磁路分析
电磁线圈磁铁的磁路如图5所示。
根据磁路学知识,有:
式中:φ为磁通量;μ0为真空磁导率;A为铁芯横截面积;N为线圈匝数;I为线圈导线电流;L1为铁芯磁路长度;μ为铁芯相对磁导率;L0为磁隙长度。
电磁铁的吸引力和φ成正比,所以当交流线圈加直流脉冲电压启动吸合时,吸引力增大数倍,实际观察到的现象是交流接触器吸合声音清脆、有力,大大减少了接触器的启动吸合时间,降低了线圈的发热,延长了线圈的使用时间。
2.3.2 线圈通过的电流
交流接触器电磁线圈通过的电流为:
交流线圈加直流脉冲电压时,式(1)中jωL=O,于是式(1)简化为:
显然,电路中的电流增加了,为了保护交流线圈不被烧毁,必须增大线圈的电阻,根据公式:
可以增加线圈的匝数或减小线径。实际上增加线圈的匝数是不可能的(线圈的空间尺寸受接触器结构的限制),所以只能采取减小线径的方法。实践证明:线径变细后,可以节省50%以上的铜线。
3 结语
将该节电器应用于CJ20-250交流接触器,最终的实验数据表明线圈有功节电率达到90%以上。长时间吸合运行,接触器无声,接触器线圈、铁心基本无温升,大大延长了线圈寿命。
关键字:交流接触器 PICl2F508 过零检测 节电器 可控硅
引用地址:
基于PICl2F508的交流接触器节电器设计
推荐阅读最新更新时间:2024-03-16 12:29
可控硅的特性与检测
可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。 1.可控硅的特性。 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻
[测试测量]
KJ005可控硅移相触发器外电路接线图
KJ005是KJ006的一种特殊情况。没有白生电源,不能直接用于交流供电的场合。该器件主要适用于双向可控硅或反并联可控硅线路的交流相位控制。需外加同步信号和外接直流工作电源。具有锯齿波线性好、移相范围宽、控制方式简单、有交互保护、输出电流大等优点。是交流调光、调压的理想器件。同样也适用于半控或全控桥式线路的相位控制。电参数如下:电源电压:外接直流电压+15V,允许波动±5%(±10%功能正常)。电源电流:≤l2mA。同步电压:≥l0V。同步输入端允许最大同步电流:6mA(有效值)。移相范围:≥l70°(同步电压220V,同步输入电阻51kΩ)。移相输入端偏置电流≤l0μA。锯齿波幅度:≥7~8.5V。输出脉冲: a.脉冲宽度:l0
[电源管理]
开关电源和可控硅整流器在活塞环电镀中的应用
0 引言 活塞环的表面电镀一直是使用较多的一种工艺,厂生产的高频开关电源和分级式可控硅整流器在全国各行业电镀中有广泛的应用,针对一些技术问题谈几点注意事项。 1 关于功率因素问题 可控硅整流器分级式是9级$11型,这种整流变压器经过分级,可大大提高功率因素,功率因素达到0.93以上。我厂在2002年就成功开发了S11型分级式整流器,空载电流三相为1.5A,这种整流器特点是:温升低,噪音小,功率因素高,纹波系数为2%。而高频开关电源是由IGBT铁氧体,逆变电路制成的一种电源,我厂早在1997年就为广西中环公司配套了一台电流为2500A,电压为0~12V的开关电源,当时实际使用中,把开关电源升到电流23
[电源管理]
简单的双向可控硅正电源驱动解决方案
电源电压在某些情况下被视为正电压或者负电压。对于不经常跟双向可控硅开关管打交道的人来说,“负电源”听起来怪怪的,毕竟集成电路从来不使用负电压。 在有些情况下,双向可控硅驱动电路优先选用负电压。本文介绍几个简单的双向可控硅正电源驱动解决方案。 正电源和负电源 如果功率半导体控制电路需要使用电源,且驱动参考端子连至市电(相线或零线端子),则需要使用非隔离电源。 双向可控硅、ACST、ACS或SCR(可控硅整流管)等交流开关的触发电路就属于这种情况。这些开关器件都是由栅电流控制。栅电流必须加在栅极引脚上,流经栅极和参考端子,参考端子包括SCR的阴极(K)、双向可控硅的A1端子或ACST和ACS开关的COM端子。 因为
[嵌入式]
过流保护在可控硅整流装置中的应用
前言
可控硅整流装置不论在电力系统还是在现代工业的各行各业中已得到广泛应用。如冶金行业中,应用于金属冶炼;化工行业中,应用于电解、电镀;在电力系统中,既可作为系统控制、保护的工作电源,同是又可作为蓄电池的充电装置。可控硅整流装置要安全运行,必须有可靠的保护措施。在整流装置过载或者输出短路时,保护措施能起到安全保护作用,使装置不受损坏。我们把这种保护功能,归结为限流保护和过流保护。这两种保护是否可靠,直接影响产品的质量,代表着产品的水平。
1 可控硅整流装置的控制原理
1.1可控硅整流装置的开环控制
以三相全控桥为例,可控硅整流装置的输出电压Ud与可控硅控制角α之间的关系如下:
Ud=1.35Uzlcosα
[电源管理]
仙童MOC系列光耦及过零检测
驱动大功率交流器件时常用双向可控硅进行功率控制,根据控制方式的不同有过零控制和移相控制。不管哪种控制都要对零点进行检测,因为双向过控硅的特性是到了交流的零点,可控硅会自动关闭输出。我们检测零点目的就是可控硅在零点关闭输出后,我们可以根据功率的需求选择时间来重新触发可控硅。
但对于单片机弱电直接控制交流肯定是不现实的,用继电器控制只能实现简单的慢速的开关量控制,而如果要实现功率调节,我们就需要用光特性的固态继电器,这种器件比较贵。而假如用光耦肯定也是不行的,因为普通的光耦是单向器件,对于交流的网电它是不能实现控制的
在这种情况下,我们最好的选择就是用MOC系列的光控可控硅,用得最多的MOC3041和MOC3021,它们的前端
[电源管理]
分享用于LED照明应用的初级侧调节反激技术
本文描述了针对 LED照明 的高 功率 因数反激式转换器,可实现所有这些特性并且能够使用基于 可控硅 (TRIAC)的标准调光器来进行调光。 I. 反激基础 对于最高约100W的隔离 电源 ,反激式拓扑已被广为接受,因为它相对简单,构成 元件 少,具有成本效益优势且性能合理。借助飞兆 半导体 应用手册AN-4137,其基本工作原理简单并易于解释。当MOSFET Q1导通时,变压器T1初级端中的电流线性斜升,建立了一个储存能量的磁场,变压器绕组的极性点 显示 极性满足条件以致次级端整流器DRect在此期间关断。一旦MOSFET断开,根据楞次定律(Lenz's law),跨越变压器的所有电压的极性反转。DR
[电源管理]