基于PIC16F74控制的高频化真在线式UPS

发布者:chunxing最新更新时间:2011-05-12 关键字:不间断电源  微处理器PIC16F74  同步控制  PI调节 手机看文章 扫描二维码
随时随地手机看文章

1  引言

    信息网络时代下数据文件的安全保护离不开UPS,而网络化,智能化、小型化,代表着UPS的发展趋势。传统的UPS采用模拟电路控制,存在着体积大,产品一致性差,升级换代难,网络监控难,保密性差等缺点,逐渐被基于MCU控制的数字化UPS所代替。美国著名的芯片供应商Microchip最近推出的PIC16F74,是一款精简指令型(RISC)高性能的CPU,仅有35个单字节指令,其带有8路8位AD,双路PWM输出,3个定时/计数器,带UART接口,195个字节RAM,4k×14Bit的Flash存储器,保密性好,其指令速度在外部晶振20MHz下,可达200ns的指令周期。

    下面介绍基于此款MCU的UPS控制方案。

2  UPS控制方案

    基于PIC16F74控制高频化真在线式UPS,其基本结构如图1所示。

图1  基本结构图

    该系统在任何电力情况下,逆变器始终是工作的。当电网正常时,它通过PFC功率因数校正实现AC/DC转换,IGBT脉宽调制技术使逆变器输出高质量的正弦交流电,同时通过充电电路对电池组进行充电。当电网出现浪涌、陷落、低压、高压、频率异常等情况时,由后备电池供电,DC/DC升压经逆变器输出交流正弦波。只有当UPS内部出现工作环境温度过高、过载等异常情况下,才由旁路输出。

    利用PIC16F74的资源,在此控制系统中采用正弦波脉宽定点查表技术,可实现产生逆变器的SPWM信号,检测逆变器电压、市电电压频率、机内温度,电池充放电管理,处理市电频率及逆变频率锁相,控制市电到电池及电池到市电模式声光报警,处理输出负载情况(包括短路)及与上位机通信等。

    MCU控制的UPS的难点主要在于处理市电频率与逆变器频率锁相同步,逆变器输出电压快速稳压,智能电池充放电管理,以及网络监控功能等。

    下面,对这四个问题提出解决方案。

2.1  市电频率与逆变器频率锁相

    为保证UPS无环流切换,要保证市电旁路电压与逆变器输出电压同相位须做软件锁相,其相关硬件如图2所示。

图2  锁相电路

    RB0接收的信号为实时跟踪市电的方波信号,CCP1输出为SPWM的指令脉冲,其经过一个有源滤波电路形成模拟基准正弦指令电压,在与另一电路的高频三角波叠加形成主调制电路,产生逆变所需的指令脉冲信号来驱动IGBT完成逆变。

    同步跟踪原理:利用RB0口上升沿中断,启动计数器,便可求出市电频率fline,判断是否需同步锁相,再比较市电过零点与CCP1输出的PWM指令脉冲的过零点,若超前,PWM指令正弦表过零减点;若滞后,则过零增点,直至两差值小于5,便可直接相位锁定,而超过误差范围,则PIC16F74开始跟踪市电,进行SPWM指令脉冲点数调整。

2.2  逆变器输出电压稳压

    输出正弦波电压的动态响应作为衡量UPS品质的主要指标,能否做到快速稳压是十分重要的。利用PIC16F74的8位AD定时采集逆变器输出电压作为反馈,在MCU内部构成含软件PI调节器电压环,保证输出电压有效值不变,实现零误差调节。同时在AD采样误差范围内为保证输出电压不过于频繁跳动,还必须运用软件滤波技术对输出电压进行微调。SPWM的输出脉宽系数Mk由式(1)计算:

    Mk=Mk-1+C0EkC1Ek-1(1)

式中:Ek为电压误差值;

      C0为积分系数;

      C1为比例系数。

    输出脉宽τ由式(2)计算:

    τ=AB|Mk|sin(2πK/P)(2)

式中:P为一个周期正弦波所分的点数;

      A,B为常数;

      K=0,1,2,……P

    再由查表法计算出输出脉宽。

2.3  智能电池充放电管理

    智能电池充放电管理主要由以下几个方面组成:

    1)电池均、浮充自动控制及转换;

    2)电池充电的温度补偿;

    3)根据不同的放电电流设计不同的放电电压保护点;

    4)定期对电池进行放电测试管理以判断电池的老化程度。

    利用相应的AD口进行输入采样(电池电压,机内环境温度),采用PWM2口进行输出控制(充电电压)。根据不同的负载查表算出电池的ΔVT数值,以判别电池的老化程度。

2.4  智能监控

    遥控、遥信、遥测作为UPS的重要指标,利用PIC16F74的UART(异步串行口),可以方便实现UPS输出标准RS232信号。

    PIC16F74有个波特率设定寄存器SPBRG,可设定各种波特率,考虑到UPS控制实时性很强,数据传输会消耗时间,选择一个合适的波特率及通信协议很重要。该方案中,波特率选为2400bit/s,UPS为被动发送数据,即所有的命令由上位机发出,UPS根据接到的帧标志,作为执行动作的依据。

3  结语

    上述控制方法实用可靠,已运用在1kVA~6kVA的高频化在线式UPS系列产品中。

关键字:不间断电源  微处理器PIC16F74  同步控制  PI调节 引用地址:基于PIC16F74控制的高频化真在线式UPS

上一篇:PIC单片机在家用电暖气中的应用
下一篇:基于DSPIC30F4011单片机的CAN总线通信设计

推荐阅读最新更新时间:2024-03-16 12:35

反激变换器副边同步整流控制器STSR3应用电路详解(1)
摘要:为大幅度提高小功率反激开关电源的整机效率,可选用副边同步整流技术取代原肖特基二极管整流器。它是提高低压直流输出开关稳压电源性能的最有效方法之一。 关键词:反激变换器;副边同步整流控制器STSR3;高效率变换器 1 概述 本文给出ST公司2003年新推出的开关电源IC产品STSR3应用电路分析。它是反激变换器副边同步整流控制器,具有数字控制的智能IC驱动器。采用STSR3作同步整流控制芯片的反激变换器基本电路简化结构见图1。STSR3的内部功能方框见图2,其引脚排列见图3。 STSR3智能驱动器IC可提供大电流输出,以正常地驱动副边的功率MOSFET,使之作为大电流输出的高效率反激变换器中的同步整流器。根据取自隔离变压器副边的一
[电源管理]
交流永磁同步直线电机介绍及其控制系统设计
  制造业中需要的线形驱动力,传统的方法是用旋转电机加滚珠丝杠的方式提供。实践证明,在许多高精密、高速度场合,这种驱动已经显露出不足。在这种情况下直线电机应运而生。直线电机直接产生直线运动,没有中间转换环节,动力是在气隙磁场中直接产生的,可获得比传统驱动机构高几倍的定位精度和快速响应速度。   本文是在我系研制的交流永磁同步直线电机基础上进行基于矢量变换控制的驱动系统设计应用。 2. 交流永磁同步直线电机工作原理   直线电机的工作原理上相当于沿径向展开后的旋转电机。交流永磁同步直线电机通入三相交流电流后,会在气隙中产生磁场,若不考虑端部效应,磁场在直线方向呈正弦分布。行波磁场与次级相互作用产生电磁推力,使初级和次级产生相对运动。
[嵌入式]
Linear推出同步降压型DC/DC控制器LTC3883/-1
凌力尔特公司 (Linear Technology Corporation) 推出同步降压型 DC/DC 控制器 LTC3883/-1,该器件具备面向数字电源系统管理基于 I2C 的 PMBus 接口。LTC3883/-1 兼有同类最佳的电流模式开关稳压器性能和精确的混合信号数据采集功能,可实现无比方便的电源系统设计和管理。LTpowerPlay™ 软件开发系统通过易用的图形用户界面 (GUI) 支持该器件。 LTC3883 允许数字设定和回读,以实现关键负载点转换器功能的实时控制和监视。可编程控制参数包括输出电压、裕度调节和电流限制、输入和输出监察限制、开关频率和跟踪。内置的精确数据转换器和 EEPROM 允许捕获稳压器设定值
[电源管理]
Linear推出同步降压型DC/DC控制
凌力尔特(Linear)推出宽输入范围同步降压型开关稳压器控制器LTC3851,该器件驱动所有N沟道功率MOSFET级并具有一致或比例跟踪功能。4V 至38V的输入范围促成种类繁多的应用,包括大多数中间总线电压和电池化学组成。强大的片上MOSFET栅极驱动器允许使用大功率外部MOSFET,以在0.8V至5.5V的输出电压范围内产生高达20A的输出电流,从而使LTC3851适合于负载点需求。应用包括汽车、工业、医疗、数据通信和电信系统,多功能打印机以及机顶盒。 Linear推出LTC3851同步降压型DC/DC控制器 恒定频率电流模式架构提供从 250kHz 至 750kHz 可选择的固定或相位可锁定(PLL)
[电源管理]
Linear推出<font color='red'>同步</font>降压型DC/DC<font color='red'>控制</font>器
凌力尔特推出同步降压型 DC/DC 控制器 LTC7800
eeworld网消息,亚德诺半导体 (Analog Devices, Inc.,简称 ADI) 旗下凌力尔特公司 (Linear Technology Corporation) 推出同步降压型 DC/DC 控制器 LTC7800,该器件以高达 2.25MHz 频率运行,以减小电路尺寸和提高功率密度。其很短的 45ns 最短接通时间实现了 24VIN 至 3.3VOUT 转换,同时以 2MHz 固定频率切换,从而避开了关键的噪声敏感频段,包括 AM 无线电频段。同步整流提供高达 95% 的效率,同时突发模式 (Burst Mode®) 工作在无负载备用情况下可保持静态电流低于 50μA,这非常适合始终保持接通的系统。 LTC78
[半导体设计/制造]
测试系统中运动控制与数据采集的二种同步方式
测试系统中采取的同步方式一般有二种:一种是运动控制卡控制电机运动到某个指定位置,数据采集卡能实时采集该位置上的数据,这种方式称为中断;另一种同步方式是如果电机运动到某个位置时数据采集卡采集到满足某种条件的信号,则需要记录电机当前的运动位置,这种方式称为捕获。 中断方式 中断分为绝对位置中断、相对位置中断及周期性位置中断。绝对位置中断是指当电机运动到某绝对位置时运动控制卡将产生外部中断信号;相对位置中断是指当电机的运动位置相对于允许电机产生中断时的位置之差满足设定的条件时产生中断信号;求模位置中断是指每相对于某个设定的位置都将产生1个中断信号。因此可以根据测试系统的不同需要决定采取什么样的中断方式。 同步的原理 当运动控制卡控制电机
[测试测量]
150V 同步降压型 DC/DC 控制器无需外部浪涌保护器件
加利福尼亚州米尔皮塔斯 (MILPITAS, CA) 2016 年 5 月 23 日 凌力尔特公司 (Linear Technology Corporation) 推出一款高压非隔离式同步降压型开关稳压器控制器 LTC3895,该器件可驱动一个全 N 沟道 MOSFET 电源级。其 4V 至 140V (150V 绝对最大值) 输入电压范围允许使用高压输入电源或具高压浪涌的输入工作,从而无需外部浪涌抑制器件。LTC3895 在输入电压降至 4V 时可继续以高达 100% 占空比运行,从而非常适合交通运输、工业控制、机器人和数据通信应用。 输出电压可设定在 0.8V 至 60V 范围,输出电流高达 20A,效率高达 96
[电源管理]
150V <font color='red'>同步</font>降压型 DC/DC <font color='red'>控制</font>器无需外部浪涌保护器件
隔离开关电源同步整流器数字控制与驱动技术介绍
1引言 在主PWM 控制 器位于初级侧的低DC输出电压 隔离 型 开关电源 (SMPS)中,通常采用专门设计的MOSFET作为 同步 整流器 (SR)。作为SR使用的MOSFET具有非常小的导通损耗,有助于提高系统效率。 在初级侧控制的 隔离 SMPS拓扑中,由于在隔离变压器次级侧没有PWM控制信号,故欲产生适当的SR控制信号显得比较困难。但是,可以从变压器次级输出获得有关数据。由于电路寄生元件的存在, 同步 信号在从隔离变压器输出分离(withdrawn)时,相对于初级PWM信号会发生延迟,并且在不连续导通模式(DCM)状态会出现振荡。因此,为SR提供驱动的控制电路必须能避免发生错误的操作。 在初级侧控制的隔离拓扑中,为
[电源管理]
隔离开关电源<font color='red'>同步</font>整流器数字<font color='red'>控制</font>与驱动技术介绍
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved