基于ARM核的单电源心电检测模块的实现

发布者:DreamySunset最新更新时间:2011-06-03 关键字:ARM核  单电源心电检测 手机看文章 扫描二维码
随时随地手机看文章

     本文给出的设计采用单电源供电,可以解决上述问题并降低产品成本,同时该设计还在基于arm核的嵌入式系统中采用了简单实用的算法,能快速准确定位QRS复波(即计算人的心率)。该设计面向广大家庭用户而设计,体积较小,只需要一台个人电脑与之连接,便可实时地操作、观测心电信号。

  心电信号采集系统的基本架构如图1所示。人体的心电信号经电极和专用导联线从人体送至系统。通过滤波和放大调节电路,微弱的心电信号被放大到合适的幅值,并处于A/D转换范围之内。

心电信号采集系统的基本架构

图1:心电信号采集系统的基本架构。

  系统的控制和数据的处理由ADI公司基于arm7 TDMI核的MCU ADuC7020来完成。这款芯片有丰富的片内外围电路,处理速度高达40MIPS,A/D转换速度可达1MSPS,具有很高的性价比。最后将结果由 ADuC7020通过UART口送至计算机,由计算机通过由LabVIEW编写的界面将结果直观地显示出来或存储下来。图2是基本的硬件电路图。

基本的硬件电路

图2:基本的硬件电路。

 

  从人体或是心电信号发生器上采集到的心电信号幅值在0.05~5mV之间(一般为2mV),频率在0.05Hz~75Hz之间。心电信号要经过缓冲、匹配电阻网络、电压放大和滤波等几级电路。

 

  心电信号首先经过一个两级的RC低通滤波电路,进入缓冲级。信号进入系统之前,需要除去高频分量,因此这里设计了一个截止频率为300Hz的低通滤波器,以保证0.05~75Hz的微弱心电信号不会被衰减。缓冲级由电压跟随器组成,它可以提高整个放大电路的输入阻抗,降低输出阻抗。为保证差分信号的一致性,应选用集成在芯片上的放大器。匹配电阻网络通常采用威尔逊电中心端网络,它通过特定的电阻网络获得威尔逊电中心端作为整个ECG系统的参考点。[page]

  滤波放大电路的前级采用负反馈差分放大电路,这里使用ADI公司可调增益高共模抑制比的仪表放大器AD8221作为前级放大器。放大倍数设为8倍,由公式G=49.4kΩ/RG+1计算得到,其中RG是AD8221两个RG管脚之间的电阻值。

   这个电阻应当选用高精度、低温漂的金属膜电阻,以保证AD8221的低噪声性能。AD8221的REF管脚没有接地,而是和一个低通滤波器构成负反馈回 路,以便能有效地滤除直流分量,从而使U1处的电压始终箝位在1.25V。因为是单电源供电,而不同导联的心电信号电压有正有负,所以一定要提供一个合适 的箝位电压。ADuC7020的AD转换模式下电压输入范围是0-2.5V,这里就选择中间值1.25V作为箝位电压。

  AD8221输出的单端信号幅值非常小,其中还混有大量干扰,无法进行数据处理。后级滤波放大电路由一个增益较大的有源低通组成,增益可调。不同人的心电信号强弱不一样,考虑到有衰减,一般将该增益设为150倍。系统的传递函数为:

公式

  这两个低通滤波器都要求具有低电压偏移、低温漂和低噪声特性,ADI公司的轨到轨输入输出双运放AD8607能够很好地满足这些要求。由于第二级放大器是反相端输入,所以最后得到的信号是反相的,这可以在软件中再作处理。

从保护病人和提高系统的共模抑制比两方面考虑,必须将共模信号反相并放大后,再反馈给人体,这样系统和人体就共同构成了一个电压并联负反馈网络,即通常所说的右腿驱动电路。由ADuC7020对处理后的心电信号进行AD转换,选择定时器控制的ADC采样模式。一次A/D转换结束,触发ADC中断,在中断服务程序中对数字信号进行处理。

  处理心电数字信号的是 对心电信号中QRS复波的精确识别。正常人的QRS波群的宽度为0.06至0.10秒,且不受心律变化的影响。针对R波很尖锐的特点,我们通过一个关键滑动时 间窗判断信号峰、谷是否满足要求,同时确认其是否在时间窗内。对信号幅值的阈值采用双可变阈值法,即对波形设置波峰阈值和波谷阈值。如果峰阈值和谷阈值在 一段适当时间内有较大变化,则重新设置峰阈值和谷阈值。下面我们将对QRS复波定位和心律计算进行讨论。对起始一段时间的信号只进行反相和滤波处理,这是 为了将倒置的心电信号恢复过来,并避免信号初期的波动影响阈值。然后在一定的时期内,根据采样得到的数据设置峰阈值Thpeak 和谷阈值THtrough,然后对QRS波进行定位。最后,按以下步骤(见图3)进行数据处理。

数据处理的基本步骤

图3:数据处理的基本步骤。

  读取新采样点Ni:

  1)判断采样的信号点幅值是否大于峰阈值Thpeak。如果不满足,则回到第1)步。

  2)如果满足条件,则开始计数n=1,并记录n值为peaktime1。将时间窗的起始边滑至此处。

  3)继续采样Ni+1,每采样一次则n+1。

  4)判断新的采样点Ni+1是否小于谷阈值。如果不满足,则回到第4)步。

  5)如果满足采样点小于谷阈值Thtrough,则记录该点的n值为troughtime1。

  6判断这两次满足幅值要求的信号点时刻troughtime1和peaktime1之差是否在时间窗内,即是否小于窗宽度THtime。如果不小于THtime,则回到第1)步。

  7)如果满足,则这段信号被认为是一个QRS波群。Peaktime1就被定位为一个R波。

  有了定位的R波,就可以在此基础上按以下步骤统计心率:

1)找到第一个R波,并记录n值为peaktime1;

2)找到第二个R波,并记录n值为peaktime2;

3)按照以下公式计算心律。

公式

  实践证明,采用这种算法计算得到的心律准确率高、计算简便、易于实现,并最终在PC机上观察到心电信号波形和心律值。

 

 

关键字:ARM核  单电源心电检测 引用地址:基于ARM核的单电源心电检测模块的实现

上一篇:基于ARM核的ADμC7O26硬件系统开发及其在医疗仪器中的应用
下一篇:基于ARM核的音频解码器单芯片系统

推荐阅读最新更新时间:2024-03-16 12:36

基于ARM的ADμC7024在医疗电子中的应用
0 引言 随着信息技术的迅猛发展和人民生活水平的提高,极大地推动了医疗电子设备的发展,当今医疗电子设备的发展趋势是高精度、实时性、低功耗和小尺寸,作为医疗电子设备中核心地位的MCU(微处理器)也随着这一发展趋势向前不断衍变着。由早期的8位MCU发展到目前的32位RISC(精简指令集计算机)MCU。美国ADI公司根据市场的需要最新推出了一款基于ARM(高级精简指令集计算机)核的微处理器ADμC7024便是目前32位RISC MCU的杰出代表。ADμC7024卓越的处理能力、集成众多片上外围器件和芯片低功耗的特点,完全胜任目前医疗电子设备的需求及未来的发展目标。 本文以ADμC7024在医疗电子中监护产品脉搏血氧计的
[单片机]
飞思卡尔演示具有突破性的四ARM应用处理器
高度可扩展的i.MX 6四核处理器在飞思卡尔技术论坛主题演讲首次亮相 2011年6月21日,圣安东尼奥(飞思卡尔技术论坛)讯-飞思卡尔半导体 今天揭开了2011美洲飞思卡尔技术论坛的序幕,其间演示了业界性能最高的四核应用处理器。本次论坛的开幕主题演讲现场演示了飞思卡尔i.MX 6四核应用处理器的多媒体功能。 i.MX 6系列涵盖一个到四个CPU内核,旨在提供无限的消费体验,为许多当今最热门的消费电子应用提供了最佳的发展空间。i.MX 6系列器件的引脚在产品系列的成员之间可以相互兼容,该系列的器件基于ARM® Cortex™-A9内核,具有一个集成IP阵列,可为以平板电脑、电子阅读器、汽车信息娱乐系统及其它智能移动器件为目标
[嵌入式]
EZchip将推全球首款10064位ARM A-53芯片
EZchip日前表示,将准备开发一款可以与博通、Cavium及英特尔竞争的服务器及通信系统处理器,不过该处理器将采用ARM架构,使用100颗64位A53内核。这颗采用28nm制程,2017年之后量产的处理速度高达200Gb/s的 Tile-MX100 的性能将超过大多数竞争对手。 该芯片是基于Tile-Gx多核架构,该技术源自2014年EZchip收购的Tilera,新的Mx相比过去的Gx系列,除了内核全部改用ARM之外,新一代产品还采用了EZchip专有的数据传输管理模块,该技术可使EZchip的产品有别于众竞争对手。 EZchip市场总监Bob Doud表示: 尽管我们是ARM阵营的后来者,但我们希望能够有亮
[网络通信]
EZchip将推全球首款100<font color='red'>核</font>64位<font color='red'>ARM</font> A-53芯片
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved