0 引言
近几年地震灾害频频发生,危害较大的是2008年我国的汶川大地震和今年的日本大地震,期间全世界不知又有多少危害较小的地震,这些地震带给人们的是惨痛的伤亡和巨大的经济损失。我们不能够阻挡地震事件的发生,但我们能做的还有很多,其中对伤员的救援就是一项重要的工作。
当然,灾后环境错综复杂,这对救援工具的要求是一种挑战,同时对灾后生命的探测也是一个很重要的问题。基于这两点,我们设计了一种简易的智能救援机器人小车,通过现场演示,取得了不错的效果。
1 智能小车总体框架
总体框架可以分为三大部分:环境图像采集部分、电机驱动部分和中央数据处理部分,系统框图如图1所示。
2 控制模块
智能救援小车最重要的部件,也就是它的大脑--中央处理系统。它不仅负责将环境图像采集部分送来的图像数据进行处理,还要将这些信息转化成为电机的驱动控制信号,使整车按照预定的规则前行,同时还要对其他一些辅助设备进行控制。这些一般单片机都可以实现,而对于行驶在错综复杂环境当中的救援小车来说,有一点很重要,那就是对外界的抗干扰能力要强,于是我们选择Microchip公司的8位微控制器PIC。该控制器除了刚才说的抗干扰能力强之外,还具有速度快、移植性好等优点。[page]
3 电源模块
救援小车整体采用可充电蓄电池供电。由于微控制器、摄像头以及电机的工作电压是不同的,我们准备了两套解决方案:一是使用模拟电路进行稳压;二是使用专门的集成稳压芯片。通过实际操作以及比较,最终选择了第二种方案。其主要优点是:a.外围电路简单,只需简单的滤波即可;b.可提供稳定的输出电压;c.制作简单、成本低。供电系统框图如图2所示。
由于摄像头需要一个9~12V的电压才能正常工作,而充电电池的电压只有6~7.2V。所以DC-DC升压电路便成为必需。DC-DC电压变换采用MC34063A集成电路,该器件内部集成了温度补偿器、比较器、动态电流带限占空比可控的振荡器和一个高电流输出驱动器。
4 电机驱动模块
驱动机器人行走的两个电机需要不同的转速来实现转弯。选用的驱动芯片为L293D,它包含4个输出通道,最大输出峰值电流为12A,能同时驱动两个直流电机工作;其信号输入端和使能端接收到来自单片机的信号,控制电机的通断以及正、反转,还可以通过向使能端输入不
同占空比的方波信号来调整电机转速(PWM方式)。如图3所示,IN端口接控制信号,OUT端口接电机的两端,EN端口接使能信号。一组IN端口输入为高/低或低/高电平时,能实现电机的正/反转。一组IN端口输入均为高或低电平时,电机将停转。EN使能端为高电平时,相应端口输入信号有效;反之,则输入信号无效。在EN端输入PWM波,通过调整PWM波的占空比,即可实现电机的无级调速。
[page]
5 越障部分
越障无疑是这款智能救援机器人的突出特色。传统的救援机器人把重点都放在了如何救援,而忽略了路途的险恶,致使救援机器人有去无回。我们充分认识到这一点,在越障部分做了相当大的改进。三个车轮通过齿轮啮合组成一个大的车轮,当超声波模块检测障碍物时,整个大的车轮翻转,使其顺利越过障碍物,到达目的地,如图4所示。
6 现场采集部分
救援现场环境复杂,存在许多潜在危险,救援人员恐难进入,但救援人员又必须准确掌握现场的环境,为救援工作创造有利的条件。通过高清摄像头很好地解决了上述问题。为了实现多方位拍摄现场画面,使用舵机来控制它的旋转角度,减速电机控制它的升降。然后,画面通过无线视频传输模块发送到上位机界面上,以供救援人员参考。
7 生命探测模块
生命探测模块也是救援机器人不可或缺的部分,因为要想救援伤员,首先需要探测伤员的位置,这就需要生命探测模块了。
BISS0001是一款高性能的传感信号处理集成电路。静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器。原理图如图5所示。
8 结论
基于单片机,我们设计了一种简易机器人救援小车,通过现演示说明,我们的设计具有一定的价值和实用性。
关键字:单片机 智能救援机器人小车
引用地址:
基于单片机的智能救援机器人小车设计
推荐阅读最新更新时间:2024-03-16 12:43
采用PIC16C54的计数器
计数器在工业控制中有着广泛的应用。传统的数字计数器都是用中小规模数字集成电路构成的,不但电路复杂,成本高,功能修改也不易。用单片机制作的计数器可以克服传统数字电路计数器的局限,有着广阔的应用前景。 本文介绍的计数器采用Microchip公司的PIC16C54单片机。该型单片机为RISC结构,在4MHz的工作频率下,每一个指令周期为1 s,运行速度大大超过MCS-51系列,适用于对实时性要求较高的工业控制领域。 电路原理 附图为计数器的原理图。PIC16C54具有两个I/O口,RA口有4条I/O线,RB口有8条I/O线。本计数器中RA口设置为输入口,用于读取BCD拨盘开关(BCD1~BCD5)设定的计数值;RB口设置为输出口,用
[单片机]
PIC单片机-PWM波
一、编写程序,使用RC2的PWM功能生成频率250Hz的正弦波 #include htc.h #define uint8 unsigned char #define uint16 unsigned int __CONFIG(FOSC_HS &WDTE_OFF &BOREN_OFF &PWRTE_OFF &LVP_OFF); //设置配置位 //WDTE_OFF:disable watchdog timer 看门狗禁止 //LVP_OFF:low voltage programming disabled 低电压编程禁止 //FOSC_HS:high speed crystal/resonator 4M以上晶振选择HS高
[单片机]
德州仪器最新低成本TMS320F2806x浮点Piccolo MCU
日前,德州仪器 (TI) 宣布推出最新低成本 TMS320F2806x Piccolo 浮点 MCU ,可提供能平衡低成本 Piccolo 与高性能 Delfino 浮点微控制器 (MCU) 的性能。最新 Piccolo MCU 源自 TI 超过 25 年的领先数字信号处理技术,可提供旨在简化编程、优化性能的增强型数学引擎,从而可满足实时控制应用对集成通信的需求。低能耗电机控制与可再生能源应用的开发人员现在可采用单个 F2806x MCU 通过低成本方式执行控制环路、电力线通信 (PLC) 协议以及调制方案。此外,最新 F2806x MCU 还可提供更加丰富的连接及 存储器 选项,并具有 TI 高稳健工具与免费 con
[工业控制]
AT89S51单片机与82C55的接口设计编程
1.硬件接口电路 下图所示为AT89S51单片机扩展一片82C55的电路图。图中,74LS373是地址锁存器,P0.1、P0.0经74LS373与82C55的地址线A1、A0连接;P0.7经74LS373与片选端CS相连,其他地址线悬空;82C55的控制线RD(的反)、WR(的反)直接与AT89S51单片机的RD(的反)和WR(的反)端相连;AT89S51单片机的数据总线P0.0~P0.7与82C55的数据线D0~D7连接。 2.确定82C55端口地址 图中82C55只有3条线与AT89S51单片机的地址线相接,片选端CS、端口地址选择端Al、A0,分别接于P0.7、P0.1和P0.0,其他地址线
[单片机]
3G、MCU技术推汽车信息娱乐系统市场提速
随着人们在汽车上花的时间越来越多,新一代汽车信息娱乐系统(IVI)正在渗透到更多的消费者中,IVI与3G的结合将创造一个庞大的产业群,中国的3G发牌也成为IVI在中国启动的导火线,目前中国的IVI市场正在迅速升温。 汽车正成为互联网上的一个节点,新一代的汽车信息娱乐(IVI)系统将能与智能电话同步音乐、地图和通讯录等众多人们随时需要的重要信息;可以独立下载当地的商业内容和多媒体内容;停车时还可以从家用PC上下载音乐与视频,并且不耽误抄股等重要的商业活动。“作为一个业务员,我一天的很多时间都生活在汽车上,自从我的汽车装上IVI后,我这半年来工作抄股两不误,我每天都要做一单T 0,否则心理不舒服。”深圳合正汽车电子公司的
[汽车电子]
AVR 单片机精确延时函数
1.毫秒级的延时 延时1ms; void delay_1ms(void) { unsigned int i; for(i=1;i (unsigned int)(xtal*143-2_;i++) ; } 在上式中,xtal为晶振频率,单位为MHz. 当晶振频率为8M时,延时函数软件仿真的结果为1000.25μs.当晶振频率为4M时,延时函数软件仿真结果为999.5μs. 如果需要准确的1ms延时时间,则本计算公式只供参考,应通过软件仿真后,再确定循环的次数及循环初值,并且循环中还必须关闭全局中断,防止中断影响延时函数的延时时间。 下面的函数可以获得1ms的整数倍的延时时间: void delay(unsigned int n) {
[单片机]
使用可定制微控制器高效开发系统级芯片 (SoC)
作者:爱特梅尔公司 (Atmel) 微控制器部传讯经理Peter Bishop 为了应对成本、尺寸、功耗和开发时间的压力,许多电子产品都建构于系统级芯片 (SoC)之上。这个单片集成电路集成了大多数的系统功能。然而,随着这些器件越来越复杂,要在有限的时间里经济地进行产品开发以满足产品上市时间的压力已变得越来越困难。SoC集成了一些可编程部件 (特别是微控制器),使得其软件开发与硬件开发同样的昂贵和耗时。 使用基于业界标准、带有片上存储器和各种标准接口的ARMò处理器,再加上面向特定应用逻辑和非标接口的金属可编程模块 (MP模块),构成的可定制微控制器是切实可行的SoC开发方法,能够解决上述问题: -采用经过验证的软/硬件模块、
[单片机]
51单片机控制步进电机硬件连接部分
1、概要: 本案例讲解的内容是51单片机控制步进电机硬件连接部分。后续会分别讲解单片机程序,S曲线加减速方法,上位机等相关内容 2、功能原理图: 2.1、51单片机: ①输出脉冲到TB6600驱动器PUL端口,从而控制步进电机转动 ②控制TB6600驱动器ENA端口,从而控制步进电机使能 ③控制TB6600驱动器DIR端口,从而控制步进电机转动方向 2.2、步进电机: ①提供机械动力 2.3、稳压电源: ①为步进电机提供电源 2.4、TB6600驱动器: ①二相四线步进电机专用驱动器 3、实物图: ** ①** 、51****单片机控制板一个 ** ②** 、二相四线步进电机一个 ** ③** 、稳压电源一个 ** ④** 、
[单片机]