一种P89LPC93X单片机控制的大功率铅酸电池充电器设计

发布者:SparklingSun最新更新时间:2011-12-08 关键字:单片机控制  铅酸电池充电器 手机看文章 扫描二维码
随时随地手机看文章

    随着全球环保意识的增强,使用铅酸电池的各种车辆不断进入人们的视野,然而目前世界上用于铅酸电池的充电器却是五花八门。这些充电器造成铅酸电池过充或充电不足的现象时有发生,后果是铅酸电池的使用寿命降低。在大功率铅酸电池充电器的设计中,减小功率损失,按照经验的优化曲线实现充电,是保障铅酸电池使用寿命的理想方法。为此,笔者设计一种单片机控制的实用大功率铅酸电池充电器。

1 充电器的硬件结构

    在充电器初级回路的主电源设计中,采用了PFC+移相全桥的拓扑结构,在充电器次级回路设计中,为了实现对电池状态的监控,并能按照经验的优化曲线对电池进行充电,加入了单片机控制。这种充电器的硬件结构框图如图1所示。




    在充电器的输入回路中,加入了功率因数校正(PFC)电路,控制芯片IC选用ST公司的L4981,该IC芯片采用连续功率因数修正(CCM)的控制方式,即平均电流控制模式。在实际应用中,这种控制方式在输出大于250W的升压电路中有明显的优势,因此在设计大功率铅酸电池充电器的输入电路中常采用这种控制模式。其控制模式电路示意图如图2所示。图中,Vin为市电经整流后的直流电压,Vs为控制芯片IC内部振荡器输出信号,Ip是控制芯片IC内部的精密电流源提供的功率限制电流,电流放大器的输出Vc取决于取样电阻Rp的大小即Vp的大小,所以PFC的功率输出也就取决于Rp的大小。电路中电流放大器输出信号Vc、振荡器锯齿波信号Vs和流过升压电感的电流信号IL的关系如图3所示。


    从图中可以看出:在时间区间ab段或cd段等奇数时间段,Vc的电压波形在和Vs交错前必须是负的斜率,而Vs必须是正斜率,并且必须交错,否则PFC输出信号无法得到控制。而在bc段或da段等偶数时间段,电压Vc和Vs都是正斜率,但是Vc的斜率必须比Vs要小,这样二者才能交错,否则PFC输出信号也无法得到控制。因此在设计控制电路时,必须按照这些要求来选择外围电路,否则电路将不动作或失去控制。这种控制方式的实际应用电路图如图4所示。[page]


    图中,Vin为市电经整流后的直流输出电压。实践证明,上述应用线路可以做到上千瓦的功率输出,并且转换效率可达到92%以上。在输出功率为360W左右时测量的PF值和THD值如表1所示。

                   


    在大功率的充电器设计中,功率损失也是衡量充电器性能的一项指标,而功率损失的大部分消耗在开关回路中。为了减少主电路的功率损失,开关回路采用了移相全桥的拓扑结构。此种拓扑结构实现了以零电压状态打开开关管,大大减少了开关管的开关损耗。移相全桥的原理框图如图5所示。图中,DA~DD为四个MOS开关的体二极管,CA~CD为四个MOS开关管的寄生输出电容,LR为谐振补偿电感。此种拓扑结构工作原理与全桥拓扑的不同在于应用于对角线桥臂的驱动信号并不是同时施加。以将要打开QC和QB的次序为例:先行关闭QD,此时CD被充电至+VIN,同时CC被放电至近似0,QC源漏极间几乎不存在压差。此时以零电压状态打开QC,这时通过变压器初级线圈的电流由DC和QC共同分担。然后再关闭QA,此后CA被充电至+VIN,这样QB的源漏极间几乎不存在压差,此时再以零电压状态打开QB。利用控制打开开关管的时间差来控制输出电压的幅度。开关管的驱动芯片可以选取TI公司的UCCx895或UC387x。四个开关管的示意驱动波形如图6所示。图中,OUTA~OUTD分别为四个开关管的驱动信号,DLY A/B和DLY C/D分别为关闭和打开两只串联开关管的间隔时间。PWM A/D和PWM B/C则分别为对角线开关管的共同导通时间,此时间的长短决定输出功率的大小。

     
                      

                

    充电器的次级输出回路设计中加入了集成PWM和A/D转换功能的智能单片机控制。例如PHILPS半导体公司的P89LPC93X系列单片机,它内部集成了振荡器、看门狗、PWM、A/D转换等系统级功能,大大减小了外部元器件的数目,节约了电路板的面积。同时单片机内部配置了FLASH存储器,并且具备在电路编程(ICP)的功能,只需在硬件设计中设置一个ICP连接器,就可以在线更改程序数据,在生产调试过程中,也无需将单片机从系统中取出即可更改PWM输出值,使充电曲线更逼近经验的优化曲线。

[page]

2 充电器的软件设计

  在软件设计中,应用P89LPC93X单片机的PWM输出控制充电器的输出电压值和电流值,利用A/D转换功能实时检测铅酸电池的充电深度、电池温度等参数,并根据电池状态对充电曲线进行调整,使充电过程能够按照经验的优化曲线进行。对于不同类型的电池,对其充电的优化曲线也不尽相同,可以在程序中设置不同的充电曲线子程序,在硬件上设置不同类型电池的控制开关作为对充电曲线的选择。对于充电曲线的软件设计,基本的程序流程如图7所示。

             
   对程序软件的编制,最好采用C语言进行开发。C语言支持多种数据类型,可以方便地更改单片机PWM的输出值,更精确地对充电器的输出进行控制。另外C语言对于处理子程序的选择和跳转非常灵活,可移植性也非常好,为以后添加更多的功能提供了方便。

  实际充电器产品按照经验优化曲线对Trojan 公司的36V 335AH电池的充电过程的实测曲线图如图8所示。

                 
  在大功率铅酸电池的充电器设计中,主电路采用功率因数校正(PFC)+移相全桥的拓扑结构,充电器的输出采用单片机控制,实现了实时监控电池的状态,使充电过程按照理想的优化曲线进行,一方面提高了充电器的效率,保证了足够的功率输出,另一方面又保护了电池,延长了电池寿命。这种设计方法具有很强的参考性和实用性

 

 

 

关键字:单片机控制  铅酸电池充电器 引用地址:一种P89LPC93X单片机控制的大功率铅酸电池充电器设计

上一篇:基于AVR单片机的有害气体红外感应及语音警示控制系统
下一篇:基于AVR的简易示波器设计

推荐阅读最新更新时间:2024-03-16 12:48

单片机控制红外线通信接口电路设计
0 前言   热误差是数控机床的最大误差源,数控机床的温度测试为机床热误差的补偿提供依据。传统的测温方案是将模拟信号通过电缆远距离传输至数据采集卡进行A/D转换并处理,实用中必须解决长线传输和模拟量传感器布线等问题。本文介绍了一种新型的设计方案,控制器采用SAMSUNG公司的32位ARM微控制器S3C44BOX,温度传感器采用单总线数字温度传感器DS18B20。采用数字温度传感器即在测试点完成了信号的数字化,提高了传输的可靠性,同时简化了外围电路,也便于传感器在机床上的布置安装。ARM处理器控制数字温度信号的采集,并与上位PC机通讯,同时其他硬件资源提供热补偿系统其他功能。本文在介绍数字温度传感器DS18B20的基础上,给出了系统
[工业控制]
用<font color='red'>单片机控制</font>红外线通信接口电路设计
L297A+L298N步进电机驱动板电路原理图PCB与单片机控制源程序
Altium Designer画的基于L297A+L298N芯片步进电机驱动模块的电路原理图和PCB图如下:(51hei附件中可下载工程文件) 驱动模块的实物图: 接上步进电机后的图片: L297是步进电机专用控制器,它能产生4相控制信号, 可用于计算机控制的两相双极和四相单相步进电机,能够用单四拍、双四拍、四相八拍方式 控制步进电机。芯片内的PWM 斩波器电路可开关模式下调节步进电机绕组中的电流。 L298N 是一种双H桥电机驱动芯片,其中每个H桥可以提供2A的电流,功率部分的供电电压范围是2.5-48v,逻辑部分5v供电,接受5vTTL电平。一般情况下,功率部分的电压应大于6V否则芯片可能不能正常工作。 步进电机的
[单片机]
L297A+L298N步进电机驱动板电路原理图PCB与<font color='red'>单片机控制</font>源程序
基于51单片机控制的以太网通讯实现
  摘要:介绍以太网的帧协议和以太网控制芯片RTL8019AS的结构特性;介绍51单片机控制RTL8019AS实现以太网通讯的硬件设计方案;采用C51语言实现ARP协议(地址解析协议),并进行了系统的调试与验证。   互联网络硬件、软件的迅猛发展,使得网络用户呈指数增长,在使用计算机进行网络互联的同时,各种家电设备、仪器仪表以及工业生产中的数据采集与控制设备在逐步地走向网络化,以便共享网络中庞大的信息资源。在电子设备日趋网络化的背景下,利用廉价的51单片机来控制RTL8019AS实现以太网通讯具有十分重要的意义。   1 以太网(Ethernet)协议   一个标准的以太网物理传输帧由七部分组成(如表1所示,单位:字节
[单片机]
基于51<font color='red'>单片机控制</font>的以太网通讯实现
单片机成长之路(51基础篇) - 013 MCS-51单片机控制详解–T2M
T2CON:定时器控制寄存器 寄存器地址0C8H,位寻址0C8H~0CFH。 位地址 CF CE CD CC CB CA C9 C8 位符号 TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 TF2:T2溢出标记   当T2溢出时TF2=1,TD2只能用软件清除   当RCLK=1或TCLK=1时,TF2将不置位 EXF2:T2外部标记   当EXEN2=1时,T2EX/P1.1引脚上的负跳变引起T2的捕捉/重装操作,此时EXF2=1。在T2中断允许时,EXF2=1将引起中断,EXF2只能用软件清除。在T2的向上、向下计数模式下(DCEN=1)EXF2的置
[单片机]
用PIC单片机控制DDS芯片AD9852实现雷达跳频系统
摘要:DDS具有分辨率高、转换速度快的优点。在一些需要高频分辨率、设置转换度的应用场合,尤其是雷达及通信系统中的跳频信号源中,DDS技术具有其它频率合成方法无法比拟的优势,是一种很有发展前途的技术。介绍了DDS的基本原理及DDS芯片功能特点以及DDS芯片AD9852的结构、特点,并采用PIC单片机控制AD9852,实现了跳频频率合成器。 关键词:DDS 频率分辨率 转换速度 频率合成 PIC单片机 在研制雷达系统时,常常需要应用频率合成技术来实现跳频信号源。频率合成是指从一个高稳定的参考频率,经过各种技术处理,生成一系列稳定的频率输出。现在应用最广的是锁相环(PLL)频率合成技术,它是通过变化PLL中的分频比N来实现输出频率的
[应用]
单片机控制GSM模块TC35的方法
介绍一种采用GSM的短信功能,可以使某些控制达到 零距离 。由于短信息的费用低廉,可以取代传统的无线遥控。现在详细介绍一种采用单片机(MCS51系列)控制TC35(廉价的GSM模块)发送、接收GSM短信的方法。 一、 TC35的控制简介 TC35是Siemeils公司推出的新-代无线通信GSM模块。自带RS232通讯接口,可以方便地与PC机、单片机连机通讯。可以快速、安全、可靠地实现系统方案中的数据、语音传输、短消息服务(Short Message Service)和传真。TC35模块的工作电压为3.3 5.5V,可以工作在900MHz和1800MHz两个频段,所在频段功耗分别为2w(900M)和1w(1800M)。
[单片机]
<font color='red'>单片机控制</font>GSM模块TC35的方法
单片机控制下的家居温度监控系统设计
  引言   温度是物联网家居系统中一个十分重要的物理量, 对它的测量与控制有十分重要的意义。随着各类物联网家居的监控日益改善,各类器件的温度控制有了更高的要求,为了满足人们对温度监控与控制, 本文设计了物联网家居系统中基于单片机的多路无线温度监控系统。   随着信息科学与微电子技术的发展, 温度的监控可以利用现代技术使其实现自动化和智能化。多路无线温度监控系统就是朝着这一目标进行设计的。本次设计要求利用单片机及无线传输模块实现无线温度监测系统,实现温控范围调节及其超温范围报警。   1 技术要点   由于本系统是一个实时监控的系统, 对温度的采集控制是实时的, 所以温度采集的时间间隔, 数据发送接收的时间差,单片机与PC
[单片机]
<font color='red'>单片机控制</font>下的家居温度监控系统设计
51单片机控制8位LED数码管做9999累加的程序
采用stc89c52单片机芯片,四位数码管的接法:P1位选 P0段选 程序: #include reg51.h void delay(unsigned int d); char t; unsigned char code duan = {0x3f,0x06, 0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; unsigned char code wei ={0xfe,0xfd,0xfb ,0xf7,0xef,0xdF,0xbF,0x7F}; main() { unsigned int f=1 ,n=0; unsigned char i,out ;
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved