引言
步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。
细分电流波形的选择及量化
步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。
图中,a为电机转子偏离参考点的角度。ib滞后于ia, ic超前于ia。此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。且步进电机在这种情况下也最为平稳。将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。这些工作大部分由计算机来完成。
步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。
细分电流波形的选择及量化
步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。
图中,a为电机转子偏离参考点的角度。ib滞后于ia, ic超前于ia。此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。且步进电机在这种情况下也最为平稳。将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。这些工作大部分由计算机来完成。在取得校正后的量化电流波形之后,以相应的数字量存储于EEPROM中的不同区域,量化的程度决定了细分驱动的分辨率。
斩波恒流细分驱动方案及硬件实现
斩波恒流细分驱动方案的原理为:由单片机输出EEPROM中存储的细分电流控制信号,经D/A转换成模拟电压信号,再与取样信号进行比较,形成斩波控制信号,控制各功率管前级驱动电路的导通和关断,实现绕组中电流的闭环控制,从而实现步距的精确细分。系统原理框图如图2所示。
控制电路
控制电路主要由80C196MC单片机、晶振电路、地址锁存器、译码器、EEPROM存储器及可编程键盘/显示控制器Intel-8279等组成,受控步进电机的细分倍数、运行脉冲频率、正反转、运行速度、单次运行线位移、启/停等的控制,既可由键盘输入,也可以通过串行通信接口由上位机设置。状态显示提供当前通电相位、相电流大小、电机运行时间、正反转、当前运行速度、线位移及相关计数等信息显示,并将工作状态和数据传送给上位机。传感器(霍尔传感器)用于检测计数器的当前值。单片机是控制系统的核心其主要功能是输出EEPROM中存储的细分电流控制信号进行D/A转换。根据转换精度的要求,D/A 转换器既可以选择8位的,亦可选择12位的。本控制系统选用的是8位D/A转换器MAX516,MAX516把4个D/A转换器与4个比较器组合在单个的 CMOS IC上,4个D/A转换器共享一个参考输入电压VREF。每个转换器的输出电压均可采用下式表示:
VDACi=VREFN/256
N=0,l,......,255,对应于8位的DAC的输入码D0—D7(此处为细分电流控制信号)。通过调节VREF的变化范围,便可调节步进电机绕组中电流的幅值。
功率驱动电路
工作中,步进电机细分电流控制信号的D/A转换值Ui输入到MAX516内部各比较器COMPi的同向输入端,绕组电流取样信号Vi输入到 COMPi的反向输入端。斩波恒流驱动采用固定频率的方波与比较器输出信号调制成斩波控制信号,控制绕组的通电时间,使反馈电压Vi始终跟随D/A转换输出的控制电压 Ui。合理选择续流回路就可使绕组中的电流值在一定的平均值上下波动,且波动范围不大。
调制用方波信号频率为21.74KHz,由80C196MC的P6.6/PWM0端产生,且各相是同频斩波,不会产生差拍现象,所以消除了电磁噪声。为防止因比较器漂移或干扰导致功率开关管误导通,让斩波控制信号和相序控制信号相与后控制功放管。
当开关管截止时,并联RC、快恢复续流二极管D、绕组L及主电源构成泄放回路。与单纯电阻释能电路相比,RC释能电路使功耗和电流纹波增加较小,而电流下降速度大大加快。电流取样信号由精密电流传感放大器MAX471完成。当绕组电流流过其内部35mΩ精密取样电阻时,经内部电路变化,转换为输出电压信号:
VOUT=ROUT×(ILOAD×500mA/A)
其中ROUT为MAX471外部调压电阻,阻值按设计要求选定。ILOAD为流过精密电阻的相绕组电流。MAX471同时具有电流检测与放大功能,从而大大方便了整个电路的设计与调试。
功率开关管(功放管)是功放电路中的关键部分,影响着整个系统的功耗和体积。由于所设计的驱动器主要用来驱动额定电流3A、额定电压27V以下的步进电机,故选用高频VMOS功率场效应晶体管IRF540(VDS=100V,RDS(on)=0.052W,ID=27A)作为开关管。 IRF540导通电阻很小,因此,即使电机长时间运转,该VMOS管壳本身的温度也比较低,无须外加风扇。
为了提高步进电机的工作可靠性,消除电机电感性绕组的串扰,本系统无论从驱动部分还是反馈部分都进行了隔离。驱动隔离采用高速光电耦合器 6N137为隔离元件,一方面可以实现前级控制电路同步进电机绕组的隔离;另一方面使功率开关管的驱动变得方便可靠。反馈通道的滤波部分采用无源低通滤波器,其作用是高速衰减绕组(电感线圈)在开关时截止频率以上的瞬时高频电压信号,从而避免控制电路做出太迅速的反应,可以有效地防止步进电机的振荡。线性光耦合电路的作用是将滤波后的采样电阻反馈信号线性地传输给比较器。
软件设计
步进电机细分驱动系统的软件主要由主控程序、细分驱动程序、键处理程序、显示数据处理及显示驱动程序、通信监控程序等部分组成。
细分驱动电路的主控制程序控制整个程序的流程,主要完成程序的初始化、中断方式的设置、计数器工作方式的设置及相关子程序的调用等。初始化包括 8279 各寄存器、8279的显示RAM、80C916MC的中断系统及内部RAM等。在80C196MC的各中断中,使用了INT15、INT14和INT13 这三个中断,其中,INT15为高优先级。在运行状态下,当有停止键按下时,则INT15中断服务程序将T1关闭,从而使步进电机停止。T1控制每一步的步进周期,该服务程序基本上只作重置定时器和置标志位的操作,而其它操作均在主程序中完成。主程序流程图见本刊网站。
细分驱动程序中,细分电流控制信号的输出采用单片机片内EEPROM软件查表法,用地址选择来实现不同通电方式下的可变步距细分,从而实时控制步进电机的转角位置。其流程图如图4所示。
步进电机的正反转控制是通过改变电机通电相序来实现的。为达到对步进电机启/停运行过程的快速和精确控制,从其动力学特性出发,推导出符合步进电机矩频特性的曲线应该是指数型运行曲线,并将这一曲线量化后,存入EEPROM。步进电机在运行过程中,每个通电状态保持时间的长短,由当前速度对应的延时时间值决定。
结语
本文提出并实现的步进电机均匀细分驱动系统,最高细分达到256细分,能适应大多数中小微型步进电机的可变细分控制、较高细分步距角精度及平滑运行等要求。大量新型元器件的采用,使所设计的驱动器具有体积小、细分精度高、运行功耗低、可靠性高、可维护性强等特点。系统软件功能丰富,通用性强,从而使控制系统更加灵活。
该驱动控制系统已经用于“全自动高精度线材切割机”的驱动控制系统中,实现了较高的稳速精度和切割精度,惯性小,运行可靠,取得了满意的效果。
上一篇:采用16-bit MCU实现超低功耗运动检测
下一篇:如何实现微控制器与FPGA的接口设计
推荐阅读最新更新时间:2024-03-16 12:53
- 热门资源推荐
- 热门放大器推荐
设计资源 培训 开发板 精华推荐
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况