1.引言
TMS320VC5402(简称VC5402)是TI公司的DSP处理器,具有高级的数据处理结构和丰富的片内资源。但是VC5402 DSP内部不具有可编程的非易失片内存储器,所以为了保存程序代码和参数表,一般情况下要外扩一片存储器。VC5402可用的通用输入输出口(I/O port)少,软件上对I/O口的控制不灵活,没有对I/O口按位控制的指令,且具有流水线延迟。多不具有通用的通信接口如UART接口,CAN总线接口等,对控制的支持功能较少。AVR(Advanced RISC Architecture)单片机是ATMEL公司的flash型单片机,广泛应用于数据处理和控制领域,具有丰富的片内资源和灵活的接口形式。片内往往集成了几十kB乃至几百kB的flash存储器,每个端口几乎都可以通过软件设置为通用的I/O口和具有特殊功能的端口。将AVR单片机和VC5402处理器相结合,发挥各自的优点将是一个很好的设计方案。本文详细描述了AVR型单片机ATMEL64L和VC5402的HPI接口的硬件设计原理和软件设计构架,同时详细阐述了VC5402 HPI形式的bootloader方法及AVR实现方法。
2. 硬件设计原理
2.1. VC5402的HPI接口
VC5402的HPI接口是一个增强版的8位并行的HPI接口简称为HPI-8[1]。在 HPI-8接口中VC5402是从机。主机可以访问VC5402中位于0x60~0x3FFF存储器空间的片内存储器,这一区域是VC5402用户可用的所有的片内存储器资源。主机通过两个寄存器:地址寄存器(HPIA)和数据寄存器(HPID)访问VC5402内部的存储器。还有一个控制寄存器(HPIC)包含有控制和状态信息。HCNTL[0..1]是HPIA、HPID和HPIC的选址信号。同时,VC5402对 HCNTL[0..1]=“01”设置了特殊的访问模式以加快主机访问片内存储器的速度。此时主机读写HPID的内容不用每次设置HPIA,当主机读 HPID时VC5402将当前HPIA所指出的片内存储器的数据传送到HPID寄存器,同时HPIA的内容减1,当主机写HPID时DSP先将当前 HPIA的内容加1,然后由此时HPIA所指出的片内存储器的数据传送到HPID寄存器。由此可见此种方式比较适合于主机访问DSP内部的连续存储器空间。由于DSP内部是按着16位的数据进行组织,所以主机通过8位的HPI口进行读写操作都必须由两次操作组成,在两次操作中由HBIL信号标明高低位字节。
2.2. ATMEL64L简介
AVR单片机是ATMEL公司的8位高性能的低功耗微控制器。具有高级的精简指令集结构,绝大多数指令都是单周期指令,执行速度快。ATMEL64L是 Atmega103的升级版,具有64k字节在线可编程的flash存储器,可用于存储程序和固定的数据。具有2k字节的EEPROM,位于数据区,可用于保存参数表。具有4k字节的SRAM,为动态数据结构的存储建立了可能。丰富的指令集、大容量而多样的存储器结构增加了ATMEL64L程序设计的灵活性。另外ATMEL64L还具有丰富的片内外设,诸如:USART、SPI、定时器/计数器、PWM通道、在片的模拟比较器等,提供了丰富的通信及控制资源。
2.3. 硬件设计实现
ATMEL64L和TMS320VC5402的HPI-8接口的硬件设计关键在于实现HPI-8接口的逻辑时序。我们研究ATMEL64L外部数据空间的读写时序[2]和HPI-8接口时序[1]发现:AVR的ALE信号在下降沿锁存低8位地址信号(DA7:0),而HAS信号也是在下降沿锁存HCNTL[0..1]、HBIL和HRW信号。在 AVR的WR信号的上升沿数据总线上的数据DA7:0已处于有效状态,在RD信号的上升沿来临时数据总线的数据DA7:0必须处于有效状态,同时HPI- 8的两个数据存储信号HDS1和HDS2均是在上升沿将相应的寄存器内容设置到HD[7..0]上或是将HD[7..0]的数据锁存到相应的寄存器。由此可见HPI-8的重要控制线均可以和AVR相应的控制线直接相连而不需要其他逻辑电路。设计的电路原理图见图1。
图1 电路原理图
当DSP退出复位状态后,30个有效时钟周期内触发了一个有效的DSP中断2,则DSP将仅进入HPI的 bootloader加载方式。原理图中将HINT引脚和DSP INT2引脚直接相连就是为了DSP复位后实时的触发DSP INT2中断。VC5402通过ATMEL64L的INT2中断申请加载DSP程序
3.HPI bootloader方式的实现
3.1. DSP bootloader方式简介
DSP的bootloader模式就是将DSP的程序代码和参数表由存储位置移动到运行位置。之所以采用这一方式主要出于以下几方面的考虑:
1.DSP系统的运行速度很快,如果程序代码存储在访问速度较慢的非易失存储器,将严重影响数据处理的速度。为提高效率有必要将程序代码移动到快速的存储空间[3]。
2.将程序代码存储位置和运行位置分开将有利于软件的在线升级。
VC5402的片内ROM存储器0xF800~0xFBFF中有TI公司固化的bootloader程序[3][4]。当VC5402处于微计算机模式时,其复位后首先执行bootloader程序。Bootloader程序依次扫描各种加载方式,当某一种方式满足时,程序停止扫描,开始以此种方式加载DSP程序。这里我只介绍HPI方式的bootloader,其他方式的bootloader加载方法请参考[5-7]。当DSP查询到有INT2中断发生时就进入HPI方式的bootloader,清零0x007F存储器单元,设置HINT信号向主机发送中断请求。查询 0x007F单元的内容是否为零,当不为零时表明DSP程序加载完毕。将0x007F单元的内容作为程序的入口地址开始执行加载的DSP程序。[page]
3.2.HPI bootloader方式的软件实现框架
通过CCS将DSP源程序编译连接成COFF文件格式得到.out文件。然后,由.out文件获得DSP代码的二进制文件。在AVR的C语言编辑环境ICCAVR V6.30C中采用下述方法将DSP的代码数据配置到AVR flash空间。要注意const关键字使用。
/* dsp vector section data. start address = 0x1000, length = 0x78 */
const unsigned int vector[120]={0xF073,0x3000,…,0xF495};
当DSP进入HPI Bootloader方式时,AVR的外部中断2产生。AVR响应外部中断2传输完相应的数据段到DSP对应的片内存储器后要撤销DSP的中断申请。软件框架如下:
#pragma interrupt_handler int2_isr:4
void int2_isr(void)
{
unsigned int number;
HPIAL = 0x0f;
HPIAH = 0xff;
for(number=0;number<120;number++) /* 传送vector数据段 */
{
AUTOWL = vector[number]>>8;
AUTOWH = vector[number];
}
…… /* 传送其他数据段 */
HPIAL = 0x00; /* 设置DSP程序入口地址 */
HPIAH = 0x7f;
WRITEL = 0x30;
WRITEH = 0x00;
while(((PIND & 0x04)==0x00)) /* 撤销DSP的中断申请 */
{
HPICL = 0x0;
HPICH = 0x8;
}
}
4. 通信软件设计框架
4.1. 主控器AVR命令的发布
AVR是主控器,DSP是从机。AVR和DSP之间通过DSP内部存储器的命令缓冲区和响应标识缓冲区交换信息。AVR触发DSP的HPI中断通知DSP 有新的命令,DSP通过向响应标识缓冲区写入不同的内容向AVR表明DSP所处的状态。AVR通过查询的方式确定DSP的处理状态。
AVR发布命令的程序框架:
HPIAL = 0x00;
HPIAH = 0x60;
WRITEL = orderhighbyte;
WRITEH = orderlowbyte; /* 向命令缓冲区0x60写入命令*/
HPIAL = 0x00;
HPIAH = 0x61;
WRITEL = orderhighparameter;
WRITEH = orderlowparameter; /*向命令缓冲区0x61写入命令参数*/
HPICL = 0x0; /*触发DSP中断*/
HPICH = 0x4;
dsphpidata = 0x00;
HPIAL = 0x00;
HPIAH = 0x62;
while((dsphpidata != 0xaa)) /*判断响应标识区0x62内容是否为0xaaaa*/
{
dsphpidata = READL;
dsphpidata = READH;
}
……
4.2. DSP对主控器命令的执行
AVR发给DSP的命令由DSP在HPI中断中处理。DSP需要设置命令和响应缓冲区、处理响应的命令和设置响应标志等工作。软件设计框架如下:
interrupt void HPINT_isr(void);
#pragma DATA_SECTION(orderbuffer,"order_sec") /* 设置命令和响应缓冲区 */
volatile unsigned int orderbuffer[8];
……
interrupt void HPINT_isr(void)
{
switch(order[0])
{
case order1: /* 处理命令1 */
……
orderbuffer[2] = 0xaaaa; /* 处理完命令1,设置响应标志 */
break;
……
}
}
5. 结论
1) 本文详细分析了AVR和TMS320VC5402 HPI接口通信软硬件设计,给出了硬件设计原理图和软件设计框架。实际测试表明该系统设计方案运行可靠。
2) 利用AVR控制功能强、集成flash存储器和DSP运算功能强、程序代码配置灵活的特点,形成AVR和DSP之间优势互补,是一个可以选择的合理的系统设计方案。
3) 有些DSP芯片内部集成的bootloader程序通过HPI口只能配置内部存储器,对于DSP程序比较大的系统仅仅利用集成的bootloader程序不能完成全部加载工作。此时用户可以自行设计一个bootloader程序,将大的DSP程序加载到外部存储器空间。
6.参考文献
[1] Texas Instruments Inc. TMS320C54x DSP Reference Set Volume 5: Enhanced Peripherals. P182~287
[2] Atmel Incorporation. ATMEL64/ATMEL64L preliminary.
[3] Texas Instruments. TMS320VC5402 and TMS320UC5402 Bootloader.
[4] Texas Instruments. TMS320VC5402 FIXED POINT DIGITAL SIGNAL PROCESSOR data sheet.
[5] Texas Instruments. A Practical Application of the TMS320C54x Host Port Interface(HPI).
[6] 李忠,李峰. DSP编程的几个关键问题. 电子技术应用, 2003,1:15-17.
[7] 香勇,施克仁. TMS320C54x的加载引导. 国外电子元器件, 2003,3:4-7.
上一篇:ATmega161在嵌入式测控网络中的应用研究
下一篇:基于Atmega8的实用车载空调控制器电路
推荐阅读最新更新时间:2024-03-16 12:53