基于皮卫星的数字化智能航天电源系统设计

发布者:心若水仙最新更新时间:2012-04-09 来源: 电子工程世界 关键字:皮卫星  航天电源  数据通信 手机看文章 扫描二维码
随时随地手机看文章

进入21世纪以来,微小卫星(micro-satellite)以其较高的功能密度,先进的技术性能以及发射与运行过程中的高度的灵活性,逐渐成为国际航天技术研究领域的重要发展方向。按照当前国际通行的卫星分类方法,重量在0.1~1kg之间的微小卫星可称为皮卫星(pico-satellite)[1]。对于以皮卫星为代表的微小卫星而言,由于其太阳能帆板面积十分有限,同时面临复杂多变的空间环境,因此要求卫星电源系统具有高效率、高能量密度与控制自主化的特点,这是目前一般工业电源所难以达到的。

本文针对皮卫星电源系统的特点开发了一套智能化、高效率的数字化电源系统,其智能化设计主要体现在:通过多种测量电路对电源系统各关键节点的电压、电流等重要信号进行实时采集、处理与分析,随时掌握电源系统的能量输入、贮存与输出以及实时效率等重要参数;在数据采集基础上,通过微控制器及其控制软件的处理,合理地采取峰值功率跟踪(MPPT)、充放电调节(BCR/BDR)等控制策略,控制电源系统工作状态,跟踪最大输入功率点;针对不同空间任务需求与能量界面参数,通过调整软件灵活地进行电源运行实验;通过串口通信方式与上位机通信,为卫星电源系统测控以及数据储存与传输提供了良好条件。

1皮卫星智能电源系统的硬件设计

皮卫星智能电源系统基于“太阳能电池阵电源控制系统蓄电池组”拓扑结构进行设计[2]。电源控制系统作为整个电源系统的核心部分,主要由以下几个部分构成:微控制单元、一次母线电压调节单元(即峰值功率跟踪单元)、二次母线电压调节单元(即放电调节单元)、充电调节单元、电压电流信号采集单元、信号处理单元、串行通信单元等。

电源控制系统的基本工作流程为:根据预先设定的空间环境参数,由太阳电池阵模拟器形成电源系统的初始输入;初始输入经过一次母线电压调节单元的调节,形成与蓄电池组工作电压相匹配的一次母线电压7.2V~8.4V,同时完成对输入峰值功率的跟踪与锁定;供给二次母线的功率经过二次母线调节器的调节,分别为星上负载提供5V与3.3V两种二次母线电压;电压电流信号采集单元不断采集初始输入、一次母线、蓄电池组、二次母线等各关键节点的电压电流信号,经由电压跟随器、一阶滤波电路与多路信号选通芯片,送入微控制单元进行A/D转换;微控制器根据各关键节点信号,经过进一步的处理与分析,向各级母线调节单元及充电控制单元发出控制信号,同时通过串行通信单元向上位机传送数据。

1.1微控制单元

微控制单元电路以ATMEL公司推出的ATmega8L单片机为核心,配以MAX397双8通道模拟多路器与MAX6129参考电压源等外围设备组成,如图2所示。ATmega8L单片机是一款基于AVR RISC的低功耗CMOS的8位高档单片机,具有接近1 MIPS/MHZ的高速运行处理能力。ATmega8L具有23路可编程多功能I/O端口,八通道10位A/D转换和三通道16位以内的PWM输出功能,因此在系统中完成10位信号A/D转换与处理,MPPT算法实现以及31.25KHz PWM控制信号输出等重要功能。

1.2一次母线电压调节单元(峰值功率跟踪单元)

一次母线电压调节单元电路以BoostDC/DC电压变换电路为核心,同时增加了以两个MOSFET组合而成的一次母线控制开关,如图3所示。Boost电压变换电路由MOSFET开关管Q1,续流二极管D3、D4,储能电感L2与滤波电容C13组成,升压变换比满足

M=Vout/Vin= 1/ (1-D) (1)

由于一次母线输出电压Vout被钳位在蓄电池组工作电压,即7.2V~8.4V区间某特定值,则调整微处理单元发出的PWM控制信号占空比D,可调整输入电压(即太阳电池阵输出电压)Vin。在此基础上,调用峰值功率跟踪(MPPT)算法,实现太阳电池阵输出功率最大化。

1.3电流电压信号采集单元

信号采集单元以MAX4373F电流传感放大器与分压精密电阻为核心,采集初始输入、一次母线、蓄电池组、5/3.3V二次母线等6处节点的电压电流信号。信号送入集成运放LM234进行电压跟随,再经过一阶R-C滤波电路滤去纹波,最终送入MAX397等待A/D转换。[page]

1.4充电调节器单元

蓄电池组充电调节器由n-MOSFET与p-MOSFET组合电子开关构成,具体结构同图3右侧的电子开关。充电过程中,MOSFET驱动器输出高电平信号,则n-MOSFETIRF3205导通,使p-MOSFETIRF4905的G极电压近似为0,此时IRF4905的S极与G极间电压为正,使IRF4905导通。当蓄电池组达到满充电压时,微处理单元控制电子开关关断。

1.5二次母线电压调节单元(放电调节单元)

由于输出电压为特定值,二次母线电压调节单元中采用了MAX649(5V输出)、MAX651(3.3V输出)的Buck型DC/DC降压变换控制芯片。MAX649、MAX651芯片将4.0V~16.5V范围内的任意的一次母线电压分别转换为3.3V与5V,供给星上各分系统的能量需求。当输出电流处于10mA~1.5A范围内,芯片功率转换效率可达到90%以上。

放电调节器同样由受微控制单元驱动的n-MOSFET与p-MOSFET组合电子开关构成。

1.6串行通信单元

串行通信单元电路以双通道串口通信驱动芯片MAX232为核心,使用串口通信标准EIA-RS-232C协议。MAX232将单片机输出的TTL电平信号“逻辑1电平+5V,逻辑0电平0V”,转化为上位机RS-232C信号“逻辑1电平-5~-15V,逻辑0电平+5~+15V”。

2皮卫星智能电源系统的软件与算法设计

2.1皮卫星电源系统控制软件基本流程

电源系统控制软件流程主要以“信号巡回检测→PWM控制信号调整→系统运行参数传输→再次信号巡回检测”过程为主干,并在“巡检→控制→数据传输”过程中增加充电控制、放电控制等分支控制功能。控制软件采用模块化思想设计,由系统初始化模块,多路A/D转换模块、数字滤波模块、数据分析与控制模块、串口通信模块等组成[3]。

2.2基于模糊控制逻辑的电导增量MPPT算法

皮卫星智能电源系统主要依靠软件中的MPPT算法实现其功率的最大化。MPPT算法原理在于:在一定的温度与光强条件下,卫星电源使用的太阳电池阵的输出电压与电流存在着非线性的关系,当输出电压到达特定值Vmp,与对应电流值Imp之间乘积达到最大值,即为太阳电池阵峰值输出功率点Pmp。

在峰值功率点处,输出功率对输出电压的微分

dP/dV=d(VI)/dV= I+V dI/dV = 0 (2)

进一步推导,可得:-dI/dV=I/V(3)

由此关系,建立基于模糊控制逻辑的电导增量MPPT算法。

其中,V(n),V(n-1),I(n),I(n-1)分别为当前时刻与上一时刻的太阳电池阵输出电压、电流值,D(n),D(n+1)分别为当前时刻与下一时刻的占空比,D为占空比调整步长。根据采集的电流、电压信号,微处理单元不断增减PWM信号占空比,利用Boost电压变换电路调整太阳电池阵的输出电压,从而使工作点到达峰值功率点Pmp,卫星电源系统获得最大的输出功率。

进一步,在基本算法的基础上引入模糊控制逻辑,其作用为加快峰值功率跟踪的速度。模糊逻辑控制器的两个输入变量分别取为当前时刻电导增量差值e(n)=-dI/dV-I/V和占空比调整步长D(n),输出变量取为下一时刻的占空比调整步长D(n+1)。然后建立相应的隶属度函数与模糊规则库,此处从略。模拟实验表明,在标准空间环境条件(AM0,25℃)下,引入模糊控制逻辑后的电导增量MPPT算法,其峰值功率跟踪所需时间减少了60%以上。

3结论

本文针对皮卫星电源系统的特点开发了一套智能化的航天电源系统,该电源系统以ATmega8L单片机为核心,对电源系统各关键节点的信号进行实时采集与处理,并运用峰值功率跟踪等控制策略,控制系统工作状态。模拟实验表明,该电源系统在标准空间环境条件(AM0,25℃)下,峰值功率跟踪性能良好,最大输入功率达到约2.75W,电源整体效率保持在82%以上。

本文创新点:采用ATmega8L单片机为核心控制器,在航天电源系统中实现了运行参数实时采集、系统自主功率跟踪、充放电调节以及上、下位机数据通信等智能化控制方法;提出了基于模糊控制逻辑的电导增量MPPT算法,快速实现对电源系统输入峰值功率的跟踪。

关键字:皮卫星  航天电源  数据通信 引用地址:基于皮卫星的数字化智能航天电源系统设计

上一篇:海底智能封堵器水声通信系统的设计
下一篇:基于USB的便携式硬度计数据通信的实现方法

推荐阅读最新更新时间:2024-03-16 12:57

电信终端FSK数据通信的低功耗实现
摘 要: FSK数据是电信网络中进行信息交互的主要方式,用来传输来电显示及话费、短信息等多种格式的数据。对FSK数据的准确接收厦其低功耗设计是对电信终端的基本要求。本设计以MC68HC908AP64单片机度HT9032D解调芯片为硬件构架,以中断查询FSK方式工作,且在三种功耗模式中切换。该方案能够实现电信终端线路取电工作并准确接受FSK。文中结合主叫识别信息接收介绍这种方案。 关键词: 电信终端 主叫识别信息 FSK数据通信低功耗 当前实现FSK数据通信的芯片种类繁多,发展迅速,在众多方案选择中,要考虑到开发成本,运行稳定性,是否能够实现线路取电等问题,而这些要求也会随着技术发展而不断提高。HC908AP64单片机是摩托罗拉
[网络通信]
LonWorks 现场总线的一种应用方法
本文介绍了利用LonWorks现场总线代替原有的现场工业控制总线。利用LonWorks底层的显形报文格式和广播方式将原来的通信协议转换成LonWorks的通信协议,把LonWorks作为通信协处理机使用,利用LonWorks的并行口与控制器如8031、80C196进行数据交换。解决了原有控制网络通信速度慢、拓扑结构不合理的问题,这种应用方法对原有的硬件不需要做大的修改,软件方面也只改通信部分,控制软件可以不变。这样即可以提升控制网络的性能,又可以减少人力物力,是LonWorks现场总线的一个典型应用方法。     一.概要     交通部上海船舶运输科学研究所于1989年开始研制实时船用网络系统,历时3年,于1991年研制成功
[嵌入式]
工控领域最流行的九大现场总线
现场总线(Fieldbus)是20世纪80年代末、90年代初国际上发展形成的,用于现场总线技术过程自动化、 制造自动化、楼宇自动化等领域的现场智能设备互连通讯网络。它作为工厂数字通信网络的基础,沟通了生产过程现场及控制设备之间及其与更高控制管理层次之间 的联系。它不仅是一个基层网络,而且还是一种开放式、新型全分布控制系统。这项以智能传感、控制、计算机、数字通讯等技术为主要内容的综合技术,已经受到 世界范围的关注,成为自动化技术发展的热点,并将导致自动化系统结构与设备的深刻变革。国际上许多实力、有影响的公司都先后在不同程度上进行了现场总线技 术与产品的开发。现场总线设备的工作环境处于过程设备的底层,作为工厂设备级基础通讯网络,要求具
[嵌入式]
高速串行数据通信接收芯片CY7B933的原理及应用
    摘要: 介绍了CYPRESS半导体公司推出的一种用于点对点之间的高速串行数据通信接收芯片CY7B933的原理及应用。详细说明了其管脚功能、内部组成、工作原理及工作方式。给出了一个由CY7B933构成的实际接收电路及设计方法。     关键词: 串行数据通信 CY7B933 FIFO IDT7200 基带传输 差分PECL输出 1 概述 CY7B933是CYPRESS半导体公司推出的一种用于点对点之间高速串行数据通信的接收芯片。与其配套的发送芯片为CY7B923。CY7B933接收芯片的内部电路主要包括两对PECL串行输入接口、PECL-TTL电平转换器、时钟同步器、成帧器、移位器、译码寄存器、译码
[网络通信]
无线电台用智能数据通信卡的设计与实现
    摘要: 介绍了采用OKI公司的FSK MODEM芯片MSM7512B、AT89C51单片机作控制实现的电台用智能数据通信卡的设计思想和实现方法。通过该卡,可方便地给以模拟方式作为话音通信的无线电台增加数据通信功能,使其性价比大大提高。     关键词: 无线电台 单片机 数据通信 调制解调器 当今信息时代,人们需要多种多样的通信手段和设备,常见的不论是有线电话还是无线电台,都为模拟信道,适合传送模块话音信号。目前,通过公用电话网进行计算机通信的技术已经成熟。而无线电台特点是老式电台,在我国使用范围很广,拥有量很大,但其功能单一,不能适应当前数据通信的要求,如何对其进行技术改造,增加数据能信功
[工业控制]
Qualcomm 利用802.11ad多千兆比特Wi-Fi支持赛车数据通信
2017 年 2 月 27 日,西班牙巴塞罗那——Qualcomm Incorporated(NASDAQ: QCOM)今日宣布,其子公司 Qualcomm Technologies, Inc.和梅赛德斯 AMG 马石油车队正展开外场试验,利用工作在 60 GHz 频段的 802.11ad Wi-Fi®技术,进行车辆传感器信息的高速无线下载测试。Qualcomm Technologies 和梅赛德斯 AMG 马石油车队曾在 2016 赛季一级方程式美国大奖赛期间成功进行了初次测试,双方计划继续进行技术开发,并在七月的英国大奖赛期间展开更多试验。在这些外场试验期间,赛车工程师利用工作在 5 GHz 的 802.11ac 与工作在毫米
[汽车电子]
PC104总线与DSP数据通信接口设计
  1  引言   从1982年世界上诞生了首枚DSP芯片后,经过20多年的发展,现在的DSP属于第五代DSP器件。其系统集成度更高,已将DSP芯核及外围器件综合集成到单一芯片上,DSP逐渐成为数字信号处理器的代名词。同时,数字信号处理技术在理论和算法上也取得了突破性进展,他本身也形成了比较完善的理论体系,包括数据采集、离散信号与离散系统分析、信号估计、信号建模、信号处理算法等内容。DSP技术已在航空航天、遥测遥感、生物医学、自动控制、振动工程、通讯雷达、水文科学等许多领域有着十分广泛的应用。通过数据采集系统将原始数据传送到DSP,DSP完成算法的处理是工程上的一种应用模式,数据的传送可以通过各种计算机总线来实现。   PC1
[嵌入式]
嵌入式Linux下ARM处理器与DSP的数据通信
摘要:本文通过一个开发实例详细说明如何通过DSP的HPI接口与运行Linux操作系统的ARM架构处理器进行数据通信。给出接口部分的实际电路和ARM-Linux下驱动程序的开发过程。 关键词:设备驱动程序 嵌入式Linux HPI ARM DSP 1 引言 基于ARM核心处理器的嵌入式系统以其自身资源丰富、功耗低、价格低廉、支持厂商众多的缘故,越来越多地应用在各种需要复杂控制和通信功能的嵌入式系统中。 内核源码开放的Linux与ARM体系处理器相结合,可以发挥Linux系统支持各种协议及存在多进程调度机制的优点,从而使开发周期缩短,扩展性增强。作为数字处理专用电路,DSP的数字信号处理能力十分强大,但对诸如任务管理、通信、
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved