无线局域定位系统的分析与设计

发布者:boyhxz最新更新时间:2012-04-20 来源: 21ic 关键字:无线局域  定位系统 手机看文章 扫描二维码
随时随地手机看文章
  引言

  本文阐述的个人位置跟踪系统是射频识别系统(RFID)在个人定位上的应用,即利用无线链路的方式实现个人的位置定位的系统。系统的频率为433MHz,通信距离为200米。系统分为手持台、基站和信息处理的数据库。基本原理是通过定时发射基站发射同步时钟信号,手持台接收到该信号后,按照一定的次序同接收基站进行数据交换。交换完数据信息后,基站即时更新数据库,并由管理PC机显示,需要时可以报警。

  空中链路安排

  通常在进行无线接收系统设计之前,必须进行链路预算分析的演示。通过演示,可以预知在特定的输出误码率(BER)和信噪比(SNR)下,为达到设计要求,接收机所需要的噪声系数(NF)、增益、和发射机的输出功率等。由射频理论可知,信号的自由空间损耗:

  L(dBm)=20log(4R/)=20log(4Rf/c)

  式中:R为通信距离;f为信号频率;c为光速。

  当f以MHz为单位,R以km为单位时,可以得到:

  L(dBm)=32.45+20logf(MHz) +20logR(km)

  若以433MHz作为空中链路频率,则L(dBm)=85.2+20logR(km)。
  
  由于通信距离设定为200米,故空中动态为1米至200米,即动态范围为71.2-25.2=46dB 。考虑到身体的不同方向衰减30dB,则动态范围达46+30=76dB。 当然,实际信号在传播过程中往往不止自由空间损耗,还有其它的损耗,这将使空中链路更加恶化。一般通过增加发送的功率,减低接收NF,增加接收增益和提高发射与接收天线增益可以使这些损耗得到补偿。

  手持台的电路由两部分组成:第一部分是单片机,其主要的功能是用于控制射频RF模块和保存与手持台ID相关的信息。射频模块则负责接收和发射基站MCU送来的信号。由于手持台采用电池供电,所以功耗、接收灵敏度以及低工作电压是其重要的指标。





图1 手持台的软件流程图[page]




图2 复时发射基站电路框图


  手持台重要的参数有:

  手持台的电路可以由CHIPCON公司的单片射频收发芯片CC1000,和TI公司的MSP430F1121微处理器组成。CC1000是一款低功耗、低工作电压、单片UHF无线收发芯片。该芯片主要为工业生产、科技和医药应用方面实现在小范围、短距离通信而设计。频率一般工作在315,433,868和915MHz,但是通过专用软件可以很容易计算出使该芯片运行在300~1000MHz内任一频率上所需的参数,并通过与各种微处理器的配合可以方便快捷地定义其工作状态。MSP430F1121微处理器也是一种具有超低功耗特性的功能强大的单片机。它有多种工作模式,工作电流视工作模式的不同为0.1至400uA 。一个中断可以将系统从各种工作模式中唤醒。而RETI指令又使MSP430返回到中断事件发生前的工作模式。因此为手持台节省能耗成为可能。另外通过MSP430微处理器可以完成对CC1000的各种工作状态设置,方便快捷。由这两个IC构成的电路完全可以满足手持台的技术指标列举如下:

  手持台的软件流程图如图1所示。

  基站的基本特性及软硬件设计如下:

  定时发射基站主要的作用是负责每隔一定时间发送一个同步时钟信号给各个手持台。手持台接到信号后即开始用计时器开始计时,不同的手持台计时时间可以通过修改程序使计时时间错开,随后进入休眠状态,等待中断唤醒。

  一个区域只可安装一个定时发射台,如果需要多台,则需要GPS定时。根据系统的需要,定时发射台的作用距离为1km,由上文可知路径损耗为85.2dB,接收灵敏度为-96dBm,加上30dB的保护能量,则接收机要求的能量为-96+33=-66dBm。如果定时发射台的天线是全向的,G=30dB,则发射机的功率要大于(-66+85.2)dBm=19.2dBm。

  按发射功率为1W来设计,设计的定时发射基站的电路框图如2所示。

  接收基站主要的作用是负责接收各个手持设备发送的数据信息。并负责将所有的数据信息及时传送给管理PC机,管理PC机根据这些信息即时更新数据库。接收基站可以多点分布。

  根据系统设计要求,接收距离按200m来设计。手持台的发射功率为0dBm,加上40dB的保护带,所以接收站接收到的功率为:-71.2-40=-111.2dBm。

  若天线增益收发相抵为0dB,则接收的灵敏度为-111.2dBm,设中频带宽设定为200kHz,则最低的可检测输入功率电平Pmin=-174+53=-121dBm,此时前端滤波插入损耗L≤4dB,则NF必须<5dB所以电路框图如图3所示。

  另外,考虑到在0.001km处,空中链路衰减25.2dB,所以接收基站收到的最大能量为-25.2dBm,由此可得系统的动态为(-25.2+111.2)dB =86dB。

  为了保证正常的通路,因此在接收基站,需要加低噪声放大器LNA(G≥15dB,NF1≤2dB),同时要有可调衰减为20dB的自动增益控制电路AGC。

  根据实际设计的需要,前端滤波器采用f=433MHz的声表面波滤波器,其插入损耗L=1.5dB。由于无源有耗网络的噪声系数为:

  系统的噪声系数为:

  1.41+0.36+0.38=2.16

  则:NF=3.34dB<5dB,完全满足系统设计的要求。

  基站的RF模块也使用单片射频收发芯片CC1000。但是为了节省成本,MCU可以使用51系列单片机。由于CC1000电源的电压为3V,因此需要设计一个从3V电平转换到5V电平的转换电路。转换电路既可以使用专用的电平转换芯片,如Philips公司的74LVC4245 和 Maxim公司的MAX3370,还可以采用CHIPCON公司开发板上的转换电路方案。

  当通信范围不是很大的情况下,比如说就在200米范围内,则定时发射基站和接收基站可以合二为一。这时基站的软件流程图如图4所示。[page]

  功耗分析

  在系统的设计中,由于手持台使用纽扣电池作为系统供电方式。因此,手持台的功耗是设计时重点考虑的问题之一,可以说是本系统成功的关键。为了阐明功耗问题,首先需要分析基本空中数据的传输过程。

  根据系统设计的需要,定时发射基站每5s必须作一次定时发射,且系统的容量为256,用19.2k波特率传输数据。136bit的定时码帧格式如下。


  
图4 基站软件总体流程图


  由于一帧数据的容量共为136bit,发送所需时间136×(1/19.2)×10-3=7ms,因而在间隔时间5s内的总容量为(5/7)×103=714 个,由于系统设计容量位256个,故系统容量足够大。

  手持台接收到定时发射基站发出的定时信号后,延迟10ms,才相继开始发送数据给接收基站,发送数据完毕即进入休眠状态,减少电源的损耗。接收基站接收完所有的手持台发射来的数据,即时更新数据库,并将结果显示或报警。

  发射定时时序的间隔为5s,其中7ms用于发射(10.4mA);另外的7ms用于接收(7.4mA)。一个手持机将用时间14ms。

  故手持台总的耗电量为:

  720×7×(10.4+7.4)/3600000=0.02492 mA/小时

  900mA/小时的电池可以使用4.1年。当然,加上MCU的功耗,电池的使用时间将会降低。

  结语

  本文介绍的个人位置跟踪系统及其解决方案主要功能和参数已经基本达到系统要求。但是在软件特别是在纠错编码方面有待改进。
关键字:无线局域  定位系统 引用地址:无线局域定位系统的分析与设计

上一篇:MSP430多处理器之间的通信方式及协议
下一篇:基于ZigBee技术的智能家居无线网络系统

推荐阅读最新更新时间:2024-03-16 12:58

嵌入式定位系统的实用设计与软件算法实现
  定位系统自问世后便得到了蓬勃发展,其应用已渗入到各行各业。个人消费领域引领移动定位类型科技产品集中涌现,其他领域和行业也有大量技术更新。目前各领域的定位系统主要集中在平台和地图的研发上,平台配合应用要求选用硬件,地图根据显示要求实现软件算法。因而,它们在定位系统的研究工作中各成体系,兼容性不强。   近年来,在定位系统设计中,硬件选择越来越集中在几个品牌的几个型号上。而软件设计方面比较分散。因而在一个兼容性强的平台上实现软件的集中研发,将是未来的研发方向。   这里提出一种系统构造模式,弱化硬件平台的影响而力求最大限度的统一软件设计。    1 系统整体设计方案   这里提出一种实用的设计方案,通过对系统的各方
[嵌入式]
浅析RFID技术在人员定位系统中的应用
    RFID技术是直接继承了雷达的原理,并由此发展起来的一种新的自动识别技术,利用反射功率进行通信奠定了RFID的理论基础,其中基于RFID中间件的人员定位技术是目前比较成熟的应用。例如在煤矿安全生产以及监狱嫌犯管理中就充分利用RFID人员定位技术。      煤矿安全生产人员定位     在分析近期几个煤矿发生的特大事故时发现几个共性问题:地面与井下人员的信息沟通不及时;地面人员难以及时动态掌握井下人员的分布及作业情况,进行精确人员定位;一旦煤矿事故发生,抢险救灾、安全救护的效率低,搜救效果差。为此,如何正确处理安全与生产、安全与效益的关系,如何准确、实时、快速履行煤矿安全监测职能,有效进行矿工管理,保证抢险救灾、
[安防电子]
基于DSP和FPGA的水声定位系统主控机设计
近年来,海洋开发日益影响人们的生活和国家社会的发展。海洋油气开发、海底光缆工程、海底矿产资源探测等等都离不开水下声学定位的支持。目前广泛采用的水下目标定向系统是合作目标定向系统,合作目标定向系统可分为合作目标、声传感器阵列、信号处理和数据处理等部分。合作目标即是被测量的目标,但它能发射用于测量的合作信号。声传感器阵列在空间布设成一定的几何形状,对合作信号进行取样,获得目标的原始数据。信号处理部分把接收到的采样信号,转变成能反映目标声场特征的有用信号,形成观测数据。上述系统中信号处理和数据处理部分是定位系统的核心部分,本文提出一种水下合作目标定向系统的数字信号处理硬件平台解决方案以及基于该平台的声学定位算法的硬件实现方案,该平台采用
[嵌入式]
基于DSP和FPGA的水声<font color='red'>定位系统</font>主控机设计
Skyhook定位系统让阿尔卑斯阿尔派MonoTra获取位置更精确
阿尔卑斯阿尔派株式会社(下称“阿尔卑斯阿尔派”)开发了提升Wi-Fi®接入点位置信息精度和简化客户端系统构建与运行的MonoTra™云服务。对诸如往返室内外等通信状态不稳定环境中的移动体,也能获取正确的位置信息。为提升位置信息精度而采用了Skyhook Wireless, Inc.,(下称“Skyhook”)的精密定位系统、Precision Location 解决方案※1。,可以在室内、建筑密集的城市部等各种环境下获取正确的位置信息。此项服务用于物流跟踪器,从2021年3月开始销售。 阿尔卑斯阿尔派将位置信息视为可在IoT和DX中应用的一项要素,与全球各家公司合作面向广阔的市场开发各项技术。 此次新开发的MonoTra™
[物联网]
Skyhook<font color='red'>定位系统</font>让阿尔卑斯阿尔派MonoTra获取位置更精确
基于无线局域网络基频发射模块测试系统
近年来已有不少公司推出高速数据采集卡 (High Speed Data Acquisition Card), 并且声称可以应用在军用雷达信号分析、超声信号分析、数字广播信号分析,或是喷墨式墨盒系统测试等各个方面。仔细观察一下这些高速数据采集卡的规格: 20~100 MS/s 的采样频率,30~60MHz 的带宽,可以供多组模拟信号同时输入,同时模拟输入的范围可通过软件选择… 等等,的确是有条件可以胜任上述应用,可惜能在报章杂志上见到的应用实例并不多, 也因此无法一窥其中的症结与奥秘。基于此原因,本文拟以凌华科技最近推出的PXI-9820 高速数据采集卡为核心,设计一套成本低廉、 功能弹性且适于大量复制的WLAN发射模块实时误差
[测试测量]
基于<font color='red'>无线</font><font color='red'>局域</font>网络基频发射模块测试系统
一种基于感应原理的城市地下管道检查孔定位系统
摘要:介绍一种用于城市各种地下管道中被覆盖的检查孔定位的检测系统。系统的传感器由探头及发射和接收电路组成。根据电磁感应原理设计了实用的探头线圈。发射电路产生发射线圈所需的激励,接收电路处理来自接收线圈的检测信号。由地面上的数据采集系统根据检测信号以及距离检测结果得到被覆盖检查孔的准确定位信息。经过实际管道中的现场实验,得到了令人满意的测试结果。 关键词:电磁感应 检查孔 检测 数据采集 所谓检查孔是指城市中被公路或人行道路面所覆盖的各种地下管道中为方便管道维护所预留的出入口。由于年代久远等原因,有关这些检查孔位置的资料往往不是很全,而检查孔本身又会被路面沥青或其它物体所覆盖,这就给城市管道的维护检修带来了极大的困难。为了在不
[应用]
一体化热成像定位系统的诞生契机及创新应用
  随着全球视频监控产业需求及应用技术的飞速发展,市场对摄像机图像有效性的追求也一路走高,甚至达到苛刻而挑剔的程度。从LowLightTM低照技术到主红外夜视技术,从BLC背光补偿技术到WDR宽动态技术,摄像机在各种光源环境下(微光、强光、背光及闪光等)的图像有效性几乎逐年递增。然而,当照度已跌破星光级(0.0001lux)、宽动态已达到120dB、主红外照明铺天盖地的今天,摄像机成像技术还能走得多远,还能给予市场多少惊喜和期待?正当一筹莫展之时,热成像技术(Thermal Imaging Technology)的引入宛如为整个视频监控行业开启一扇了窗,以全新、更高的科技及应用技术指导视频监控摄像机的发展。   所谓热成像技术是指
[安防电子]
一体化热成像<font color='red'>定位系统</font>的诞生契机及创新应用
基于C8051F020的大灯仪自动定位系统
  大灯仪是用来检测前照灯的专用检测设备,它主要由自动定位系统和检测系统两大部分组成。在接收检测指令后,可自动进入被检前照灯光照区跟踪光轴,然后自动检测被检前照灯发光强度、高度,以及远、近光的照射方向。并可对四灯制或两灯制的前照灯进行自动测量。检测完成后,自动返回初始位置,检测结果自动送出。   本系统的设计思路为,通过光线感应器件将大灯仪在移动过程中处于不同位置时感应到的光强信号经过放大处理,通过适当的控制算法后得到相应的控制信号,再将此控制信号输出到电机,通过电机将大灯仪定位于恰当的检测位置,从而完成大灯仪的自动定位。该大灯仪硬件结构框图如图1所示。 图1 大灯仪硬件结构框图 图2 环境光补偿电路 图3 光电
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved