美国Dallas公司推出的串行接口实时时钟芯片DSl302可对时钟芯片备份电池进行涓流充电。由于该芯片具有体积小、功耗低、接口容易、占用CPUI/O口线少等主要特点,故该芯片可作为实时时钟广泛应用于智能化仪器仪表中。
笔者在调试中发现在对DSl302编程中有几个问题易被疏忽而导致错误,现提供给读者参考。
1读操作出现的错误
按照参考文献[2]的读操作程序框图和参考文献[1]、[2]所叙述的可知:单字节读操作每次需16个时钟,地址字节在前8个时钟周期的上升沿输入,而数据字节在后8个时钟周期的下降沿输出。据此结合图1的硬件连接图编制出了如下的单字节读程序:
DS_READSETBP1.2;令=0。
CLRP1.1;令SCLK=0。
CLRP1.2;令=1,启动芯片。
LCALLDS_WSUB;写8位地址。
LCALLDS_RSUB;读出8位数据。
RET
DS_WSUBMOVR7,#08H
WL00PRRCA;A为地址字节。
MOVP1.0,C
SETBP1.1;在时钟上升沿
NOP;输入地址字节。
CLRP1.1
DJNZR7WL00P
RET
DS_RSUBSETBP1.0;为读数据作准备。
MOVR7#08H
RL00P:SETBP1.1
NOP
CLRP1.1;在第9个正脉冲的下
MOVC,P1.0;降沿开始输出数据。
RRCA;A中为读出的数据。
DJNZR7,RL00P
RET
若使用如下程序对DSl302的RAM1其内容为5AH 进行读操作
READ:MOVA#11000101B;RAM1单元的读地址。
LCAllDS_READ;调用读子程序。
则程序执行后A中的数据为2DH,显然读出的数据不正确。若再使用一条RLA指令调整后,则A中为5AH,结果才正确。由此说明:使用上述程序读出的RAM1单元中的第0位数据实为第1位数据,读出的第7位数据实为第0位数据。[page]
经笔者仔细研究时序图和多次试验得知,问题的原因在于:对于读操作时序,在SCLK出现第8个正脉冲时,上升沿输入地址字节的最后一位数据,而在此正脉冲的下降沿就要输出数据字节的第0位数据。然而笔者的程序中是在第9个正脉冲的下降沿才误认为输出了数据字节的第0位数据,此位数据事实上是第二个下降沿输出的,故实为数据字节的第1位数据。经笔者实验:只要RST保持为高电平,如果超过8个下降沿,它们将重新从第0位输出数据位,因程序中输出的最后一位数据位,是9个下降沿输出的数据位,故实为数据字节的第0位数据位。
由此可见,单字节读操作的时序图如改为图2所示时序图,则读者较容易理解可避免发生上述编程错误。
只要将上述的DS_RSUB子程序改为如下的子程序即可解决上述问题:
DS_RSUBl:SETBP1.0;为读数据作准备
MOVR7,#08H
RL00P:CLRP1.1;SCLK第8个正脉冲的
MOVC,P1.0;下降沿开始输出数据。
RAC
SETBP1.1
DJNZR7,RL00P
RET
2禁止涓流充电出现的错误
涓流充电寄存器(TCR)控制着DSl302的涓流充电特性。据参考文献[1]、[2]介绍,寄存器的位(TCS)4~7决定着是否具备充电性能。仅在1010编码的条件下才具备充电性能,其它编码组合不允许充电。位2和3(DS)则在和之间选择是一个还是两个二极管串入其中。如果编码是01,选择一个二极管;如果编码是10,选择两个;其它编码将禁止充电。该寄存器的0和1位(RS)用于选择与二极管相串联的电阻值,其中编码01为2kΩ;10为4kΩ;11为8kΩ;而00将不允许充电。笔者编制了如下的允许涓流充电的控制程序(选择一个二极管,充电限流电阻为4kΩ):
SETBP1.2;令=0
CLRP1.2;令SCLK=0
CLRP1.2;令=1
MOVA#90H;TCR的写地址
LCALLDS_WSUB
MOVA#10100110B;TCR的命令
LCALLDS_WSUB
用万用表串入与可充电池之间,执行程序后,则有电流流过万用表,表示充电正常。笔者通过将上述程序的第6句改为:MOVA,#10100010B,即置DS为00来禁止涓流充电器工作。执行程序后,在与电池之间串入万用表,则仍有电流流过,表示尚未禁止充电。若将第6语句改为:MOV A,#10101110B,即置DS为11,执行上述程序后情况仍如此。若将第6语句改为:
MOV A,#01010110B即TCS≠1010
或:MOV A,#10100100B即RS=00则充电被禁止。
笔者误认为芯片损坏,换上另一新购置的芯片,结果仍如此。随即笔者取下图1所示电路中的可充电池,换上一标称为10kΩ的电阻对芯片进行了测试,测试结果如表1所示=5V。
由此可见,当涓流充电控制寄存器中的DS位为00和11时并不能禁止充电,而是选择了一个二极管充电,这说明参考文献中介绍的有误。若要想禁止充电器充电,应将第6句改为:MOVA,#0101XX00B即TCS≠1010,RS=00,这样,就能双保险地禁止充电。
3受干扰时钟/日历信息出现的错误
笔者将DSl302应用于某产品中,发现系统受到干扰时,有时其时钟停振不能正常工作,此时的时钟/日历信息也被修改。
经分析得知:系统受到干扰程序飞跑,在看门狗复位前,CPU正好执行写程序将写保护寄存器的最高位置0为允许写(实际上,在系统校时程序之后已将其置为1禁止写),修改了时钟/日历信息且使秒寄存器的最高位置1,致使时钟停振出现错误。
为避免此类错误的产生,笔者采用的方法是:在写程序中增加了某一检测条件,此条件为系统中某一口线上的电平,低电平条件满足。只有在实时校时过程中,才通过手动使此口线为低电平,实时校时过程完成后,又通过手动使此口线为高电平。这样只有实时校时过程中,才允许修改时钟/日历信息,因此起到了时钟/日历信息的写保护作用。
上一篇:基于单片机的电动自行车速度与里程表设计
下一篇:交通灯智能控制系统设计
推荐阅读最新更新时间:2024-03-16 13:03
设计资源 培训 开发板 精华推荐
- 送个“车”,抽Keysight牌汽车碎片兑好礼
- 【读书月】读一本RT-Thread技术好书,写下你的读书笔记
- 有奖活动|逛安富利人工智能云会展,解锁AI资料,赢好礼!
- 挑战四月 恩智浦MCU开发体验搜集令!
- 有奖直播:TI最新C2000实时控制器,在功率变换应用中实现高性能的成本优化型设计
- 年末福利!2019 TI 工业应用精选课程汇总,抢楼赢好礼
- WEBENCH轻松注册,尽享精彩好礼!
- 干货下载|ADI 公司再生能源—能源储存解决方案
- 有奖直播|多款MSP430™片上Sigma-Delta ADC助力高精度信号检测应用 报名中
- 共抗疫情 少出门多学习: 多部TI实用课程奉上, 身体不能在路上就让灵魂在路上