一直以来,针对网络传输实时视频对嵌入式软硬件都有较高要求。本文利用基于ARM920T内核的S3C2440嵌入式微处理器,采用压缩比更高的H.264视频压缩标准和开源嵌入式Linux系统,设计了一款基于嵌入式视频服务器的远程实时视频采集系统。
1 采集系统平台搭建
1.1 系统硬件平台
该采集系统以PC作为客户端,以广东友善之臂计算机科技有限公司研发的ARM9开发板Mini2440作为视频服务器,采用SamsungS3C2440为微处理器,用专业稳定的CPU内核电源芯片和复位芯片保证系统运行时的稳定性。三星公司推出的这款16/32位RISC微处理器S3C2440,采用ARM920T的内核,典型主频400 MHz,最高可达533 MHz,使用5级流水线技术,并采用丰富的控制模块为各种应用提供扩展。该采集系统的结构如图1所示。
1.2 系统软件平台搭建
PC机端使用内核版本为2.6.18的Linux 5红帽子企业版,由于后续需要在Windows平台进行FTP资料传输等工作,所以采取了虚拟机安装Linux的方式,这样方便Linux和Windows的数据网络交互。虚拟机软件版本为Vmware 6.5.1,采用的传输软件为基于SFTP协议的Flash Fxp。而交叉编译工具主要为Binutils、Gcc和Glibc。
一个嵌入式系统软件角度主要分为引导加载程序、Linux内核和文件系统3个层次,其中引导加载程序是系统加电后运行的第一段软件代码。BootLoader就是在操作系统内核运行之前运行的一段程序。在负责引导用的Hash存储器中,通常会按照图2的顺序分布。
因为后期进行摄像头驱动编写移植过程需要大量的调试,基于网络的NFS根文件系统就比较合适。基于这种考虑,选择了网络功能强大的U-boot作为BootLoader。移植U-boot主要做了以下工作:(1)修改编译条件,添加寄存器定义,修改时钟。(2)修改中断禁止部分,添加S3C24 40的中断禁止代码。(3)在board目录创建新开发板目录。(4)以smdk2410.c为模板修改PLL以及UPLL的设置。(5)修改Makefile相应配置行以支持该开发板。
修改完毕后进入工作目录进行板级配置,通过交叉编译工具链对改后代码进行编译。利用H-JTAG软件进行烧写,如图3所示为烧写成功并通过超级终端引导完成。
根文件系统挂载方式主要有ramdisk,NFS和initramfs这3种。制作自启动的嵌入式设备需要用initramfs作为根文件系统的内核进行烧写。先0地址处存放的是U-boot,约为100 kB;然后在0x0000~0x40000存放了约64 kB的环境变量。这两项均固定,所以uImage的大小必须控制在1.75 MB以下,并从0x40000开始存放。uImage包括内核和根文件系统两部分,需要针对其进行裁减,以符合项目要求。[page]
在嵌入式系统中,BusyBox是构造文件系统常用的一个软件工具包。本文采用它来构建根文件系统。本项目使用的目标板内核为Linux 2.6.29,但根据项目自启动需要进行相应裁剪,根据最小系统标准进行裁减,串口、网口、根文件系统可用,并保留本文所要求的摄像头驱动,裁剪后的内核大小为1.3 MB,满足系统需要,如图4所示。
2 视频驱动编写以及C/S软件设计
2.1 T.264编码库优化移植
T.264为中国视频编码自由组织联合开发的开源编码器,它对H.264的特性支持单一,编码器可输出标准264码流,解码器能解T.264编码器生成的码流,它吸收了JM、X264和XVID的优点,适用于网络流媒体的传输。由于本文研究的视频采集系统应用于可视电话视频会议等应用中,对网络传输的要求较高,综合比较后,选用T.264作为本系统的软件编码器。
采用H.264中的基本档次,仅使用CAVLC熵编码方式即可满足应用要求。综合不同平均码率下的编码性能以及网络传输能力的考虑,对于QCIF格式运动平缓的视频序列,编码输出帧率为15 f·s-1时,设置平均码率为128 kb·s-1是比较合适的选择。使用T.264开源编码器,并对T.264进行代码级优化编译。在编译级添加了如下选项:(1)-fomit-frame-pointer选项忽略函数中不必要的帧指针,节省指令开销。(2)-04几乎打开了所有的优化选项,以尽可能提高程序运行效率。(3)-msoft-float:产生基于浮点运算函数库调用的软浮点目标代码。
2.2 视频驱动编写以及C/S软件设计
采用目前国内市场占有率较大的台湾松翰SONIX613a主控芯片的摄像头,该摄像头支持Jpeg格式和4:2:0采样的YUV原始视频数据输出,数据量小,可直接作为H.264等视频压缩编码标准的原始视频数据源,避免了对图像的重采样和色彩空间的变换等复杂的数字运算处理,适合嵌入式的实时视频采集应用。
2.2.1 驱动程序Gspca的修改移植
Gspca/Spca5xx是自由软件基金会发布的通用USB摄像头驱动程序。但由于该解决方案在Linux内核中并无驱动支持,所以必须针对其进行驱动的添加和修改,如图5所示。
[page]
2.2.2 C/S软件设计
出于对特定的应用对象以及成本的考虑,本文采用基于有线以太网络流媒体传输H.264视频的解决方案。采用开源软件VLC作为流媒体服务器与客户端播放器,进行单向点对点实时视频通信。图6为视频采集系统工作流程图。
[page]
(1)服务器端软件设计。视频采集系统的服务器端采用后台控制程序video_server受理客户端video_client对VLC视频服务器的远程管理与设置,通过同一端口(3490)和同一套消息码进行通信。并在系统初始化脚本/etc/init.d/rcS中激活网卡后添加后台运行服务器控制程序Video Server的命令,使开发板启动后在后台自动运行video_server,它首先创建服务器端的套接口描述符,并与服务器端口地址及与client端统一的通信端口绑定,接着进入服务响应的主循环体,侦听套接口数据及连接,根据来自客户端的消息请求提供不同服务。video_server软件流程如图7所示。
(2)客户端软件设计。
客户机端程序Video Client的运行于PC机平台,用来向Server端发送远程控制命令。通过远程控制命令,可以配置服务器端的视频格式码率和传输协议、启停服务器端VLC进程、调本地VLC播放器接收并播放来自服务器端的视频图像等。
针对此程序利用跨平台界面库QT设计了GUI操作界面,有助于用户的交互。
由于服务器端对CIF格式图像采集及压缩编码速度较慢,因此程序仅支持这两个档次QCIF64 kb·s-1、QCIF-128 kb·s-1。设置完毕,点Connect按钮,Client向Server发送附带服务器设置参数的连接请求,若从Server接收到OK消息,表明server端接受了本地的连接请求并启动了Server端的VLC服务器,这时客户端将Connect按钮置为Disconnect按钮,同叫调用本地VLC播放器,接收并播放服务器发送的视频数据:若从服务器接收到NOK消息,则出错。服务器在正常接收和播放服务器发送的视频数据时,若点Disconnect按钮,则向Server发送SRV_QUIT请求,同时关闭本地的VLC播放器,Server接收到SRV_QUIT消息后,关闭Server端的VLC服务器。
整个系统PC机是客户端,基于S3C2440处理器的Mini2440开发平台是嵌入式视频服务器,Client程序通过以太网连接服务器,服务器响应请求后启动VLC进行视频采集并将视频数据传输到客户端,而后Client程序调用VLC播放器窗口对接收到的码流进行实时播放,正常工作情况如图8所示。
从视频图像帧率上看,经过优化的T.264编码器对QCIF视频平均码率在128 kbit·s-1时,编码速度能够达到16 f·s-1,但由于USB摄像头采集QCIF格式图像在约13 f·s-1,因此需要在服务器端设置压缩帧率为13 f·s-1,这样可以保证客户端以原有帧率解码视频流,从系统的整体性能考虑,这个码率能够满足远程教育和视频监控等应用。
3 结束语
研究了嵌入式Linux的开发技术,建立起基于Mini2440开发板的Linux开发平台,包括搭建交叉编译环境,设计裁减移植BootLoader和Linux2.6.29内核,构建基于BusyBox的根文件系统,开发针对视频采集系统的专用摄像头驱动。研究了H.264视频压缩编码标准,针对该视频采集系统对开源的T.264编码器进行编译和代码级优化,达到实时应用要求。研究了基于UDP协议的网络传输方案,修改设计服务器端的采集程序和客户端的视频解码播放程序,最终实现嵌入式视频采集系统的运行。
上一篇:基于S3C2440A终端LCD驱动电路的设计与实现
下一篇:Samsung S3C2440平台上的Vxworks BSP移植
推荐阅读最新更新时间:2024-03-16 13:04