基于MC9S12DP256B的客车ABS控制器设计

发布者:WhisperingHeart最新更新时间:2012-10-19 来源: 21IC 关键字:MC9S12DP256B  客车  ABS控制器 手机看文章 扫描二维码
随时随地手机看文章

汽车防抱死制动系统简称ABS(Anti-Lock Brake System),是在汽车制动过程中,防止车轮完全抱死,提高汽车在制动过程中的方向稳定性和转向操纵能力,缩短制动距离。针对汽车防抱死制动系统(ABS), 国际上流行的控制方法有逻辑门限值控制、PID控制、滑模变结构控制、最优控制、模糊控制和神经网络控制等控制方法。国内开发ABS采用的控制方法主要是最基本的逻辑门限值控制方法。目前,国内研究ABS理论的科研单位有很多,比较有代表性的有:以郭孔辉院士为代表的吉林大学汽车动态模拟国家重点实验室、清华大学汽车安全与节能国家重点实验室、华南理工交通学院汽车系、济南程军电子科技公司等。国内生产ABS的公司不少, 但大多数公司是和国外著名ABS公司合作生产, 其产品并非自主研制开发出来的。完全自主开发ABS的国内比较有代表性的公司有重庆聚能汽车技术有限责任公司和西安博华机电股份有限公司等[1]。

汽车在制动过程中,车轮可能相对于路面发生滑移,滑移成分在车轮纵向运动中所占的比例可由滑移率来表征。定义滑移率为s:

式中: v为车身速度,ω为车轮角速度,r为车轮半径。在不同的滑移率时,附着力系数也不同。试验表明,纵向和侧向附着力系数与滑移率关系如图1所示。

11.jpg

防抱死制动系统的工作原理就是将车轮的滑移率控制在最佳滑移率sc附近,以获得较高的纵向和侧向附着系数从而减小制动距离以及保证汽车制动时的方向稳定性。

1 ABS硬件设计

1.1 MC9S12DP256B单片机[2]

MC9S12DP256B是Motorola 16位单片机HCS12家族中的一员,其处理单元采用16位的STAR12CPU。片内资源包括256KB的Flash ROM、12KB的RAM、4KB的EEPROM、一个8通道的脉冲宽度调制模块(PWM)、一个8通道的增强型捕捉定时器模块(ECT)、两个8通道的A/D转换模块(ATD)、两个串行通讯接口(SCI)、三个串行设备接口(SPI)等。在Codewarrior集成开发环境中,可以对单片机进行程序编辑、编译、下载和在线调试,使其开发十分便利。

ECT模块具有八个输入捕捉/输出比较(IC/OC)通道,四个8位或两个16位的脉冲累加器(PAI)通道。当该模块运行时,16位的自由定时器按照设定的时钟频率在$0000~$FFFF之间循环计数。若某个通道设置为I/O功能,当被测信号的设定边沿到来时,输入捕捉逻辑立即将自由定时器的内容捕捉到16位的IC/OC寄存器中,其分辨能力高达1μs甚至更高,并设置中断请求标志,随后程序进行中断处理。若某个通道设置为OC功能,输出比较逻辑自动将IC/OC寄存器的内容与自由定时器的内容进行比较,一旦相符立即操作对应的引脚,同时设置相应的中断标志,随后程序进行中断处理,引脚输出波形的时间分辨能力也可以达到1μs甚至更高。脉冲计数器则只对输入脉冲的个数或者边沿进行计数,不产生中断。在轮速采集算法中使用了该功能。[page]

IC/OC与通用I/O口PORTT共享八个引脚。四个8位的PAI通道0~3与前四个IC通道IC0~3共享引脚PORTT0~3。本控制器中,PORTT0~3使用脉冲累加器功能,注录四个轮速传感器的脉冲个数。当产生实时中断(RTI)后,中断程序读取脉冲累加器的值,计算车轮的速度,同时脉冲累加器清零,重新开始计数。PORTT4~7使用输出比较功能,当IC/OC寄存器的值与自由计数器的值相等之后,产生中断,四个中断程序分别处理各自轮子的ABS控制策略。

1.2 电子控制单元ECU硬件结构

ABS的核心部件是电子控制单元ECU(Electronic Control Unit)。ECU电路主要包括四个模块:电源模块、轮速信号处理模块、运算模块、电磁阀驱动电路,其基本功能是要实现轮速的采集、ABS的故障检测、按照控制规律对电磁阀发控制信号。其结构框图如图2所示。

22.jpg

2 ABS控制算法

ABS控制算法采用逻辑门限值控制。它的基本原理是以车轮的加减速度作为主要控制门限,以车轮的滑移率作为辅助控制门限,在减速度达到下门限值时发出减压控制信号,在加速度达到第一上门限值时发出增压控制信号。如此反复循环,直到轮速降至一个较低的数值,退出ABS控制。

不同的路面附着系数使用不同的控制策略,所以算法的第一步就是识别路面。路面识别的方法是:首先给车轮发出保压信号,保压一段时间后,根据此时的轮减速度来识别路面。如果此时的轮减速度超过了第二上门限值,则说明是高附着路面;如果轮减速度在第一上门限值和第二上门限值之间,说明是一般附着路面;如果轮减速度小于第一上门限值,则说明是低附着路面。这样做的结果是每个轮子的保压等待时间占据一个循环周期的大部分时间,如果采用四个轮子的循环顺序来执行则需要很长时间,不能满足时效性要求。但如果引入多任务实时操作系统势必使得算法过于复杂。因此,提出了引入四个中断处理的方法,即每个轮子都有独立的计时时钟,ABS控制完全按照各自设定的中断时间执行,实现了四个轮子的并行控制。中断时间的设定是保证一秒钟ABS控制循环执行十几到几十次。

2.1 ABS详细控制策略

Step 1:轮减速度刚达到下门限值时,系统开始保压,同时计算滑移率,直到判断出车轮进入不稳定区域,置阶段标志位Flag=2,减压。

Step 2:判断减速度,直到减速度小于下门限值,置Flag=3,保压。

Step 3:保压一定时间,判断此时加速度的大小:(1)如果加速度小于第一上门限值,判断为低附着路面,置Flag=41,减压。(2)如果加速度在第一上门限值和第二上门限值之间,判断为一般路面,置Flag=42,保压。(3)如果加速度大于第二上门限值,判断为高附着路面,置Flag=43,增压。

Step 4:根据Step3得出的Flag值执行不同的控制方案。

Step 5:一个阶段完毕,置Flag=1,准备进入下一个循环。

这样程序每次进入中断后都将根据阶段标志位的值执行不同的控制阶段,直到完成整个ABS控制。

2.2 轮速处理算法[4]

轮速是ABS 程序中计算车轮加减速度的基础。对轮速的处理必须满足:(1)实时性好。ABS 的防抱死控制一秒钟要进行多次循环,因此对轮速处理的及时性要求很高,要求轮速处理程序不能过于复杂。(2)精度高。ABS 轮速的精度对其以后的轮加减速度和参考车速的计算精度影响很大。

轮速采集的方法通常有周期法和脉冲计数法,这里采用脉冲计数法。脉冲计数法是利用一定时间内轮速传感器采集进来的齿圈个数即脉冲数来计算轮速。其计算公式为:

ω=2(πr/N)×(n/△t)           (2)

式中,ω为车轮角速度;r为车轮半径;N为齿圈齿数;n为记录的脉冲个数;△t为测量时间间隔。由式(2)可以看出,计算误差主要由后半部分引起。单片机的计时很精确,因此△t的误差可以忽略不计,但脉冲个数n易造成±1齿的测量误差。误差产生示意图如图3所示。

33.jpg

在低速时,这±1齿的误差很可能会造成ABS的误动作。如果增加测量时间间隔△t,ABS控制时效性变差。这里采用平均值法,即保持△t不变,每次计算轮速取最近四次的脉冲计数值的平均值,这样就减小了随机误差,既能反映出车轮减速度的变化趋势,又能防止±1齿的误差给计算带来大的干扰。

2.3 程序流程

程序流程图分别如图4、图5、图6所示。[page]

44.jpg

55.jpg

3 仿真平台及结果

仿真方式采用xPC Target结构。xPC Target是MathWorks公司发行的一个基于RTW(Real-Time Workshop)体系框架的补充产品,它可将Intel 80x86/Pentium计算机或PC兼容机转变为一个实时系统,而且支持许多类型的I/O接口板,采用宿主机和目标机的“双机型”解决途径,使用两台PC机,其中宿主机用于运行Simulink,而目标机则用于执行实时代码。目标机运行了一个高度紧缩的实时操作内核,通过以太网络连接来实现宿主机和目标机之间的通信。仿真结束后可将结果数据上传至宿主机,进行分析处理。

客车整车模型在宿主机Matlab/Simulink环境中搭建,然后采用xPC工具将模型自动转换成C代码,通过以太网下载到工控机中作为被控对象,实现实时仿真。硬件部分的信号接收及转换使用Advantech公司的数据采集卡PCL-726完成。控制器的开发平台使用Metrowerks公司的Codewarrior3.1,程序编译之后下载至控制器(ECU)中,并在BDM模式下调试程序。半实物仿真平台如图7所示。

77.jpg

其中一个轮子的仿真结果如图8所示。

88.jpg

图8为车辆初速度为25mps、路面附着系数为0.6工况下的单轮结果图。图中四条曲线分别代表车身速度、车轮速度、电磁阀信号和制动踏板信号。电磁阀高状态表示增压,0状态表示保压,低状态表示减压。1秒钟之后给制动信号, ABS开始起作用。由图中可以看出,在轮速骤减的地方毛刺大,而电磁阀都是处于减压或者减保脉冲阶段;在轮速变化比较平缓的地方都是处于增压或者增保脉冲阶段。9秒钟以后,车身速度降到3mps以下,自动退出ABS控制,恢复到常规制动。在整个制动阶段中都没有出现过车轮抱死的情况,结果比较理想。

本文介绍了利用Motorola单片机MC9S12DP256B进行客车ABS控制器的设计,提出了采用四级中断的方式实现并行任务的处理。仿真平台使用快速原型开发技术,利用Matlab自带的xPC Target工具,将Simulink模型直接生成可执行的C代码,构成闭环半实物仿真平台。经过模拟各种工况后,控制器均取得了很好的控制效果,可以实车测试进一步优化,以达到成品化的效果。

关键字:MC9S12DP256B  客车  ABS控制器 引用地址:基于MC9S12DP256B的客车ABS控制器设计

上一篇:基于ARM+DSP的驾驶员眼部疲劳视觉检测算法设计
下一篇:基于MC9S12HY32的电动汽车仪表盘设计

推荐阅读最新更新时间:2024-03-16 13:10

空中客车公司和意法半导体合作研发功率电子器件,助力飞行电动化
双方将合作研发先进功率半导体技术,推动航空业向混动和纯电动系统转型 合作研发的半导体器件将助力未来的混动直升机、飞机、以及空客的ZEROe(零排放飞机计划)和CityAirbus NextGen(下一代城市空中客车)中发挥重要作用 2023年6月30日,中国– 全球航空航天业先驱空中客车公司(Airbus,以下简称空客)和服务多重电子应用领域、全球排名前列的半导体公司意法半导体(STMicroelectronics,以下简称ST;纽约证券交易所代码:STM)最近签署了一项功率电子技术研发合作协议,以促进功率电子器件更高效、更轻量化,这对于未来的混动飞机和纯电动城市飞行器发展至关重要。 在签署该合作协议
[电源管理]
空中<font color='red'>客车</font>公司和意法半导体合作研发功率电子器件,助力飞行电动化
基于CAN总线的城市客车信息集成控制系统
1 引言     随着电子技术的不断发展,汽车电子技术也迅速的发展了起来,汽车上各种电子控制单元的数目也不断地增加,连接导线显著增多,因而提高控制单元间通信的可靠性和降低导线成本已成为迫切需要解决的问题。在20世纪80年代,以研发和生产汽车电子产品著称的德国bosch 公司针对此问题开发了can总线协议,这种多主网络协议,它的基础是无破坏性仲裁机制,使得总线能以最高优先权访问报文而没有任何延时。can作为标准车载网络技术,其在汽车网络化应用的进程中起着桥梁和纽带的作用,将城市客车信息集成采集提高到一个新的层次。 2 城市客车信息集成控制系统概述     城市客车信息集成控制系统是建立在汽车网络控制技术的基础上,从控制对
[嵌入式]
基于MC9S12DP256B的汽车防抱死系统设计
1 前言   随着汽车行驶速度的提高,道路行车密度的增大,对于汽车行驶安全性能的要求也越来越高。汽车的防抱死制动系统(ABS)应运而生,它是以传统制动系统为基础,采用电子控制技术,在制动时防止车轮抱死的一种机电一体化系统。 2 基于双CPU结构的防抱死系统   ABS系统设计中主要考虑以下几个问题:首先,由于ABS系统直接关系车辆的安全性能,因而它的故障问题显得极为重要,系统必须保证能及时检测故障并准确判断故障点;其次,ABS系统通常包含电磁阀等感性负载,驱动电流很大,需要适当的驱动电路;此外,为了便于ABS系统与车辆上其他系统进行通信,系统需要预留通信接口。   本文以原有的四传感器四通道(4S/4M)ABS电子
[汽车电子]
基于<font color='red'>MC9S12DP256B</font>的汽车防抱死系统设计
客车网络控制中的CAN/CAN网桥设计方案
     1 引言   控制器局部网CAN(ControllerAreaNetwork)是德国RobertBosch公司在20世纪80年代初为汽车业开发的一种车载专用串行数据通信总线,经过多年的发展,现在越来越多的被众多汽车厂商所认可,并在包括BMW、Benz、VOLVO等汽车上使用。CAN由于其独特的特性,不仅在汽车领域,而且在工业控制领域也得到了广泛的运用,如工业现场控制、小区安防、环境监控等。由于在具体工程运用中,往往需要连接两路CAN子网,因此CAN/CAN网桥是必不可少的,是组网的关键设备之一。本文在将客车网络控制系统划分为底盘和车身的两个网络控制子系统的基础上,利用Philips公司的LPC2119微控制器,从硬件和软件
[嵌入式]
奥迪与空中客车公司暂停研发飞行出租车
奥迪可能没有像想象中那样快地拿出飞行出租车产品。这家德国豪华品牌之前与Italdesign及其合作伙伴空中客车公司一起全速研发空中出租车,但这些计划现在被搁置了。 在《欧洲汽车新闻》周一的一份报告中,奥迪表示,它正在为城市空中交通活动制定新的方向,并且尚未就潜在的未来产品做出决定。奇怪的是,也是大众汽车集团旗下的保时捷,透露了与波音的合作伙伴关系,该伙伴关系将研发针对未来的高级空中出租车。目前尚不清楚奥迪相关工作终止是否与此有关。
[机器人]
客车DC600V供电电源主电路的设计
    目前,在电气化区段,列车供电系统,由装在机车(拖车)内的客车供电装置将接触网、受电弓送来的的25 kV单相交流电,经降压整流,滤波成600 V直流电压,提供DC600 V电乐等级的列车供电母线。各空调客车通过配电柜供电选择开关将其中一路600 V直流送入空调逆变电源装置(简称逆变器)及直流110 V电源装置(简称充电器),分别向空调、电开水炉、冰箱等三相交流电器负载、电视机等单相220 V插座供电,并在给蓄电池充电的同时向照明、供电控制等直流负载供电。由于现有的客车DC600 V供电电源装置的主电路采用是晶闸管单相半控整流电路,功率因数低,输出电压经常在500~700 V间振荡,电压波动不稳,极易导致客车上的逆变器、充电器发
[电源管理]
<font color='red'>客车</font>DC600V供电电源主电路的设计
在空中客车机载娱乐系统中CPCI单板计算机的应用
经济全球化的发展使得地域间交流变得越来越频繁,而作为长途旅行的首选交通工具——飞机正越来越多的影响着人们的生活。虽然飞机速度很快,然而数小时甚至十几、二十小时的长途飞行依然让人疲惫不堪,因此如何消磨长途旅行的机上时间是一个棘手的问题。不过最近以来,如果您经历过越洋飞行的话,您一定会注意到飞行中的一个显着变化。一定发现了吧,飞机的机载娱乐系统变化了!是不是感觉时间过得比以前快了。更全面更方便的娱乐系统让你在飞机上的时间不再是枯燥乏味。   在以前我们乘飞机的时候可以看到一个大屏幕和多个小屏幕,而人们只能观看航空公司编辑好的娱乐节目,可能播放的电影不是您想看的,甚至是你看过的,更甚是你讨厌的。那就是度日如年了,你总不能因为自己
[工业控制]
在空中<font color='red'>客车</font>机载娱乐系统中CPCI单板计算机的应用
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved