基于MC9S12X128无刷直流电机控制系统设计

发布者:Meshulun最新更新时间:2012-10-19 来源: 电子设计工程 关键字:MC9S12X128  无刷直流电机  位置检测  电流检测 手机看文章 扫描二维码
随时随地手机看文章
    直流无刷电机是一种高性能电机,它具有效率高、可靠性好、结构简单、便于维护和体积小等优点。与直流电机相比,无刷电机没有电刷和换相器,而采用电子电路进行换相,换相时不会产生电火花,不存在机械换向损耗。与异步电机相比,无刷电机的转子与定子磁场同步旋转,因此不存在转子损耗。与同步电机相比,无刷电机控制方法简单,便于工程应用的特性,使其被广泛应用于众多领域。
    直流无刷电机的控制方案有多种,如文献采用DSP作为主控制器的控制系统,文献采用FPAG控制无刷电机,文献选用MEGA8单片机控制方案。这些控制方法都能够实现电机的正反转、启停等控制,但在系统实现成本、控制精度、运行稳定性和外围电路的能源消耗等方面上却有较大的差别。使用DSP和FPAG的控制方案,系统的控制精度高、稳定性好,可以应用于工业生产中,不足之处在于成本过高,无法大量用于日常生活中。而采用MEAG8控制方案虽然成本低,与DSP、FPAG相比,系统的性能相差很大,无法满足工业生产的要求。
    针对上述问题,提出设计以MC9S12X128单片机为核心的直流无刷电机控制系统。该控制系统实现成本低,而电机的控制性能上与DSP和FPGA等高端控制方案上相差不大,可以在工业生产中广泛应用。文中所选择的主控芯片有丰富A/D转换和PWM通道,适合电机的控制。为减少能源消耗和降低电路的复杂性、电路成本,提高控制系统的可靠性,同时也为了便于系统维护和功能扩展,系统硬件电路采用模块化设计的原则,每个模块电路尽可能使用集成芯片。

1 直流无刷电机控制原理
    直流无刷电机的运行原理与有刷直流电机基本相同,只是电机的换相方式有区别,无刷电机采用电子换相,利用转子位置传感器检测转子位置,通过换相驱动电路控制与电枢绕组连接的各功率MOSFET管的导通和关断,实现电机换相的目的。电枢绕组Y连接三相全控桥驱动电路如图1所示。

b.jpg


    三相全控桥电路的换相周期为60°电角度,每个换相周期中只有两个功率MOSFET管导通,每次换相一个功率管,每个功率管导通120°电角度。图中Q1~Q6为功率场效应管,当需要AB相导通时,只需要打开Q1,Q6管,而使其他管截止。此时电路中的电流路径为:电源正极-Q1-线圈A-线圈B-Q6-电源负极。按照这种导通方式就会有6种相位模式:AC,BC,BA,CA,CB,AB,对应的MOSFET管打开顺序为Q1Q2,Q2Q3,Q3 Q4,Q4Q5,Q5Q6,Q6Q1,如果规定这个导通顺序为电机正向旋转一周,则反向旋转只要逆着控制上述MOSFET管导通顺序即可实现。

2 控制系统主要硬件电路设计
2.1 系统硬件结构
    直流无刷电机控制系统结构框图如图2所示。控制系统以MC9S12x128单片机为核心控制芯片,负责处理采集传回的电流和转子位置信号,电机控制算法的实现,生成直流无刷电机旋转所需的控制脉冲及与外界交互操作等功能。通过按键设定需要的转速之后,主控芯片根据给定的转速生成相应频率的PWM信号,控制驱动电路的功率管开关时间,使电机的转速达到预期值。无刷直流电机的换相时刻由转子的位置决定,因此系统中加入了位置检测电路用于检测转子的位置,位置传感器采用的是位置霍尔传感器。为了保证电机在动态过程中出现电枢电流过流或欠流时系统的性能不会受到过大的影响,加入了电流检测电路,通过这个电路将流过电机的电流进行采样,一旦出现异常情况,主控制器马上采取相应的措施保护这个控制系统,避免意外事故的发生。隔离电路是防止感性负载的存在而产生大量的干扰信号,将干扰产生的影响降到最低,使系统能够长期稳定的运行。监控电路的作用是使系统一直工作在有效电压之内,提高系统的可靠性。RS232接口和按键接口电路用于电机转速调节和控制,满足对转速的各种要求。

c.jpg


2.2 主控器
    主控制器选择的好坏直接影响整个直流无刷电机控制系统的性能,在充分考虑了实现成本和功能需要后,采用飞思卡尔的MC9S12X128作为主控制芯片。该芯片具有丰富的A/D转换通道和PWM通道,适合用于电机控制。在实际使用时只要配置好相应模块的寄存器,就可以使用模块功能,不需要复杂的程序编写,这样就可以将主要精力放在硬件电路性能的提高上。对于系统运行过程中出现的问题,可以方便地进行调试和维护。[page]

2.3 驱动电路
    在驱动电路设计中,考虑到电路的成本和可靠性,放弃了传统的3个P沟道和3个N沟道构成的逆变桥驱动电路,而采用专用的无刷电机驱动芯片IR2130实现电机的控制。IR2130驱动电路的外围元件少,具有电流放大和过电流保护功能,且抑制噪声的能力强。最主要是在保证电路应用的精度和可靠性的前提下,较大程度地降低了成本,该电路的性能价格比较高,有利于推广应用。直流无刷电机驱动电路如图3所示。

d.jpg


    图3中,IR2130的HIN1~HIN3、LIN1~LIN3作为功率管的输入驱动信号与主控芯片连接。FAULT与MC9S12X128外部中断引脚连接,由控制器中断程序来处理故障。考虑到电枢线圈由于自身电感的作用会产生极高的瞬时反电动势,会击穿元件,在功率管上加入D5~D8这6个二极管,其作用是通过续流而防止出现过高的反电动势造成MOSFET管损坏。C3~C5是自举电容,为上桥臂功率管驱动的悬浮电源存储能量,D1~D3的作用防止上桥臂导通时的直流电压母线电压到IR2130的电源上而使器件损坏,因此D1~D3应有足够的反向耐压,由于二极管与电容串联,为了满足主电路功率管开关频率的要求,D1~D3选择了快速恢复二极管8TQ080。
2.4 位置检测电路
    直流无刷电机与普通有刷直流电机的不同在于,普通直流电机连续旋转需要机械换相,机械换相会产生电磁干扰,而且噪声大,直流无刷电机正好克服了这些缺点,它采用的是电子换相。电子换相依据是转子磁极位置,因此转子位置检测是控制无刷电机的一个关键环节。位置检测电路的作用是向主控芯片提供准确的转子位置信息,主控芯片根据转子位置及时地作出换相操作,使电机连续的旋转。该部分电路主要由位置霍尔传感器和位置检测电路构成。直流无刷电机位置检测电路如图4所示。

e.jpg


    这个位置检测电路选用MAXIM的MAX9621芯片,通过在模拟输出端对传感器电流进行镜像或通过经过滤波的数字输出,使MC9S12X128能够监测霍尔传感器的状态,达到精确检测电机转子位置的目的。此电路与采用运算放大器构成的位置检测电路相比具有结构简单、精度高、成本低、功耗低等优点。

[page]

2.5 电流检测电路
    电流检测可以给系统提供保护,通过电流检测电路采集的电流信息,主控制器可以及时地做出判断,一旦电流超过电机的极限值,就切断电路电源,避免发生较大的损害。直流无刷电机电流检测电路如图5所示。

f.jpg


    图中RSENSE是电流采样电阻,其两端的电压VSENSE为检测电压。R20~R24构成的分压电阻网络与芯片内部的两路比较器相连,如果16引脚出现过流或欠流的情况,在6引脚上就会有高电平信号输出给主控芯片,主控芯片会根据这个信号及时做出相应的操作,保护系统不受到损坏。

3 控制系统主要软件设计
3.1 位置检测和换相控制程序
    实现直流无刷电机稳定旋转的关键是及时的掌握换相时刻,并在该时刻作出正确的换相操作。转子位置信号有3个位置霍尔传感器输出,经位置检测电路采集后送至主控芯片。3个霍尔传感器的输出信号相差120°电角度。每个霍尔传感器在转子旋转一周时会产生6个脉冲信号,正好对应6个换相时刻。通过单片机的捕捉功能捕捉这些脉冲信号,就可以获得这6个换相时刻。在换相控制程序中,将捕捉到的位置信号与换相控制表进行比较计算,换相控制字与MOS管工作状态关系如表1所示,得到下一时刻状态控制字,然后将这个状态控制字输出给IR21 30来切换功率MOSFET管,从而实现正确换相。直流无刷电机换相控制程序流程如图6所示。

f.jpg

h.jpg

[page]

3.2 PWM波形生成
    PWM调制是利用数字输出对模拟电路进行控制的一种有效技术,尤其应用在电机转速控制方面。使用PWM调节电机转速,电机电枢电流的脉动量小,容易连续且调速范围宽。PWM信号的产生有多种方法,可以用555定时器组成的占空比可调的电路产生,也可以对单片机进行软件编程产生。考虑到成本和电路设计的需要,文中的PWM信号用软件的方法获得。MC9S12x128有8个PWM输出通道,每个通道都可以通过编程实现PWM信号的左对齐或居中对齐输出,波形翻转可控制,时钟可选择的频率范围宽,可以根据实际需要进行设置。在设计的控制系统中只使用PWM0~PWM2这3个通道,设置PWM输出的起始电平为高,对齐方式为左对齐,总线时钟设置为24 MHz。输出的PWM信号给上桥臂的功率MOSFET管,而下桥臂的功率管采用常开或常闭方式控制。PWM波形生成程序流程,如图7所示。

i.jpg



4 实验结果及分析
    为测试文中设计的无刷直流电机控制系统在实际运行时的效果,根据文中的设计方案,按照系统电路各部分电路选择合适的电子元件,搭建了硬件电路。电路中MOSFET选择的是IR公司的IRFR5305和IRFR1205。实验用的电机选择的是新西达2210(KV1000)外转子无刷电机。输出的PWM频率为32 kHz。无刷直流电机在占空比为50%时,A、B、C三相端电压波形如图8所示;无刷直流电机某相反相感生电动势波形如图9所示。

a.JPG


    通过电机长时间运行测试、观察,整个系统的响应速度很快,运行平稳,测试期间无故障发生。但是,从图9中可以看出,反相感生电动势波形的顶部有弯曲,说明电机出现过早换向的现象,此时无刷直流电机会发生轻微震动,这种情况是由于无刷电机的磁隙较大造成的。对从硬盘拆解下磁隙较小的无刷电机进行测试,发现硬盘无刷电机的反相感生电动势波形的顶部没有弯曲。这说明无刷电机磁隙对反相感生电动势有一定的影响。

5 结束语
    根据直流无刷电机的控制原理,设计了一种直流无刷电机控制系统,文中给出了主要电路的设计原理图。硬件电路采用模块化设计,方便系统维护,而且在实际应用中还可以根据实际需要扩展其他功能。该系统具有实现成本低、稳定性好等特点,能够满足对精度和成本的要求。后续研究工作将集中在基于电流环和转速环的直流无刷电机双闭环控制及直流无刷电机的转矩脉动上,以获得更好的动态控制性能和稳定性能。

关键字:MC9S12X128  无刷直流电机  位置检测  电流检测 引用地址:基于MC9S12X128无刷直流电机控制系统设计

上一篇:MC9S12NE64型单片机的以太网连接应用介绍
下一篇:MC9S12UF32的嵌入式文件系统数据存储模块

推荐阅读最新更新时间:2024-03-16 13:10

高端电流检测电路及原理
高端/低端检流电路 低端检流电路的检流电阻串联到地(图1),而高端检流电路的检流电阻是串联到高电压端(图2)。两种方法各有特点:低端检流方式在地线回路中增加了额外的电阻,高端检流方式则要处理较大的共模信号。 图1 所示的低端检流运放以地电平作为参考电平,检流电阻接在正相端。 运放的输入信号中的共模信号范围为:(GNDRSENSE*ILOAD)。尽管低端检流电路比较简单,但有几种故障状态是低端检流电路检测不到的,这会使负载处于危险的情况,利用高端检流电路则可解决这些问题。 高端检流电路直接连到电源端,能够检测到后续回路的任何故障并采取相应的保护措施,特别适合于自动控制应用领域,因为在这些应用电路中通常采用机壳作为参考地。
[电源管理]
高端<font color='red'>电流检测</font>电路及原理
基于DSP+CPLD的无刷直流电机三环控制设计
    摘要: 以先进的TMS320F2812型数字信号处理器(DSP)为主控制芯片,利用CPLD实现无刷直流电机(BLDCM)的逻辑换相,以位置环控制为主,速度环和电流环控制为辅,设计了一套BLDCM的三环控制系统。系统对数字电路与功率电路进行光耦隔离,确保整个系统具有良好的电磁兼容性。控制软件采用定周期控制,循环等待中断发生。实验结果表明,该系统工作稳定、可靠,具有良好的动、静态特性,且实时性强。 关键词: 无刷直流电机;三环控制;数字信号处理器 1 引言     现有的BLDCM控制系统大多采用单环控制,很难同时满足系统的快速性、稳定性与准确性的要求。此处采用TMS320F2812型DSP为主控制芯片,采用EPM3128A
[嵌入式]
四轴飞行器无刷直流电机驱动控制设计的实现
简介:下面这篇文章针对四轴飞行器无位置传感器无刷直流电机的驱动控制,设计开发了三相六臂全桥驱动电路及控制程序。设计采用ATMEGA16单片机作为控制核心,利用反电势过零点检测轮流导通驱动电路的6个MOSFET实现换向;直流无刷电机控制程序完成MOSFET上电自检、电机启动软件控制,PWM电机转速控制以及电路保护功能。该设计电路结构简单,成本低、电机运行稳定可靠,实现了电机连续运转。 近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。 无刷主流电机的驱动控制方式主要分为有位置传感器和无位置传感器的控制方式两种。由于在四轴飞行器中的要求无刷直流电
[单片机]
四轴飞行器<font color='red'>无刷直流电机</font>驱动控制设计的实现
基于DSP的焊接电流检测系统设计
电阻焊是一种将电网的能量经转换后直接对工件进行熔合的高自动化程度的焊接方法。它广泛地应用于汽车、航空及航天等行业。随着电阻焊应用领域的不断扩展及深入,对焊接质量也提出了越来越高的要求 。 要对焊接质量进行精确控制的关键是焊接电流及其状态电流参数的在线检测。目前国内外测量电阻焊焊接电流有效值的方法有两大类,即模拟法和数字法。其中数字法中的逐点积分法检测精度高,得到了广泛的应用 。该方法会占用大量的CPU时间 ,随着计算机技术的发展,各种高速高性能处理芯片不断出现,因此本文设计了基于DSP的电流检测系统,它可以实现电流的快速准确检测。 1 系统硬件设计 电流检测系统硬件结构如图1,本系统中采用了美国德州仪器公司(TI
[嵌入式]
高电压高精度电流检测和输出电平转换电路图
  电路功能与优势   电流监控功能在电源管理、电磁阀控制和电机控制等许多应用中非常关键。在负载的高端监控电流,就可以实现精确的电流检测和诊断保护,防止对地(GND)短路。   AD8210 等集成器件可提供高电压接口,并能够在分流电阻上进行双向电流监控,从而简化高端电流监控。它具有高共模抑制(CMR)特性和出色的温度性能,可在应用中实现最佳精度。该器件放大经分流电阻流至负载的电流,并提供以地为参考、与负载电流成比例的输出电压。   在采用双电源的应用中,AD8210的输出可以驱动 AD8274等精密、低失真差动放大器,如图1所示。AD8274可提供额外增益,并以所需的输出共模电压为中心实现AD8210输出电平转换,这有利于与使
[电源管理]
高电压高精度<font color='red'>电流检测</font>和输出电平转换电路图
基于Saber的无刷直流电机控制系统仿真与分析
无刷直流电机是在有刷直流电机的基础上发展起来。1955年,美国的D.Harrison等人首次申请用晶体管换向电路代替有刷电机机械电刷的专利,标志这现代无刷直流电机的诞生。 相对于有刷电机,无刷直流电机采用电子换向代替了机械换向,转速高,输出功率大,寿命长,散热好,无换向火花,噪声低,可在高空稀薄条件下工作,广泛应用在要求大功率重量比、响应速度快、可靠性高的随动系统中。 随着DSP数字控制芯片功能和速度的提高,以数字信号处理器为核心的控制电路和嵌入式控制软件将代表无刷直流电机控制的发展方向。无刷直流电机必须和电子换向器、位置反馈器配套使用,控制更加灵活,当同时导致控制硬件、算法复杂度增加。 在无刷直流电机控制系统设计过程
[嵌入式]
基于dsPIC30F6010的无刷直流电机的控制系统
无刷直流电动机作为机电一体化产品,由于其既具备交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备有刷直流电机的运行效率高、无励磁损耗以及调速性能好等诸多优点,同时克服了有刷直流电机由于机械电刷和换向器的存在所带来的噪声、火花、无线电干扰以及寿命短等弊病,并且制造成本低,简化了电机的维修,使得它在工业上的应用也越来越广泛。本文涉及的系统以dsPIC30F6010为核心的数字信号控制器(Digital Signal ControlIer,DSC)为基础,迎合了控制领域的数字化和智能化的趋势。目前在控制上较多应用以DSP作为控制器,传统的DSP用做数字信号处理,使其在满足系统快速性和实时性的基础上兼顾控制能力。而dsPIC3
[单片机]
基于dsPIC30F6010的<font color='red'>无刷直流电机</font>的控制系统
微型无刷直流电机的无位置传感器控制
0 引言 在一些应用场合要求使用的电机体积小、效率高、转速高,微型永磁无刷直流电机能够较好地满足要求。因为电机体积较小,安装位置传感器困难,所以微型无刷直流电机的无位置传感器控制就显得尤为必要。 无刷直流电机的无位置传感器控制的难点在于转子位置信号的检测,目前国内外研究人员提出了诸多方法,其中反电动势法最为简单、可靠,应用范围最广泛。普遍采用的控制方案为基于DSP的控制和基于专用集成电路的控制等,但是其价格高、体积大,不利于用在微型电机控制器中。本文介绍基于C8051F330单片机、检测反电动势法的无位置传感器无刷直流电机的控制器,系统结构简单,体积超小型,价格低廉,运行性能良好。 1 无传感器无刷直流电机的控制方式 实
[工业控制]
微型<font color='red'>无刷直流电机</font>的无<font color='red'>位置</font>传感器控制
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved