基于DSP的焊接电流检测系统设计

发布者:JoyfulJourney最新更新时间:2010-07-26 来源: 微型机与应用关键字:电流检测  DSP  温度补偿 手机看文章 扫描二维码
随时随地手机看文章

    电阻焊是一种将电网的能量经转换后直接对工件进行熔合的高自动化程度的焊接方法。它广泛地应用于汽车、航空及航天等行业。随着电阻焊应用领域的不断扩展及深入,对焊接质量也提出了越来越高的要求[1]。

    要对焊接质量进行精确控制的关键是焊接电流及其状态电流参数的在线检测。目前国内外测量电阻焊焊接电流有效值的方法有两大类,即模拟法和数字法。其中数字法中的逐点积分法检测精度高,得到了广泛的应用[2]。该方法会占用大量的CPU时间[3],随着计算机技术的发展,各种高速高性能处理芯片不断出现,因此本文设计了基于DSP的电流检测系统,它可以实现电流的快速准确检测。

1 系统硬件设计

    电流检测系统硬件结构如图1,本系统中采用了美国德州仪器公司(TI)的TMS320LF2812DSP 作为主控芯片,该处理器是目前国际上最先进、功能最强大的32位定点DSP芯片之一,它既具有数字信号的处理能力,又具有强大的事件管理能力和嵌入式控制能力。

    检测系统硬件由传感器模块、信号调理电路、A/D转换电路、DSP模块、键盘/LCD模块组成。系统的信号处理电路包含两个模块。模块1先对传感信号进行积分、信号调理后,通过微分和过零比较电路,用于电流信号的检测;模块2将传感器送来的信号进行积分、信号调理后,送到12位A/D转换器MAX191中,最后由DSP进行逐点积分检测计算,获得电流的有效值,因此模块2的主要作用是检测和处理电流数值,计算的结果送到LCD液晶显示屏显示。

    在本系统中,A/D转换器的转换位数、分辨率、转换速度对检测系统的系统精度很重要。以往用单片机利用逐点积分法进行电阻焊焊接电流的检测时,模数转换大多采用8位数字输出的ADC0809模数转换器,它的分辨率仅为0.390 6%,转换时间约为100 μs,A/D转换误差和漏采误差都较大,造成测量精度低。为了节约转换时间、提高检测精度,拟采用12位逐次逼近式A/D转换器MAX191,它的分辨率为0.024 4%,其转换时间为7.5 μs,比ADC0809快大约13倍。用它进行模数转换,可提高分辨率,减小A/D转换误差,同时可以通过增加A/D采样次数来缩小采样间隔,减少漏采误差,可以保证高精度控制的要求。

    系统采用霍尔传感器进行电流检测,霍尔传感器可以检测交直流电、电流瞬态峰值,可以隔离测量且可以应用在通信电源、电化学、电源电池监测、电焊机、电动机监测等场合[4-5],具有良好的通用性。但由于霍尔元件为磁感应元件,容易受环境温度影响,本系统通过在检测电路中添加一个温度传感器(图1)进行温度补偿,系统在检测前进行标定,通过测量环境温度,得到不同温度下霍尔元件的温度特性,则在检测时,DSP就能够根据不同的温度进行软件补偿,从而提高检测准确度。

2 系统软件设计

2.1 电流检测程序设计

    由系统硬件设计可知,当检测系统的信号处理线路检测到有电流信号的时候,会向DSP的INT1发送一个触发信号,使DSP产生中断并调用中断服务程序(如图2)。中断服务程序先使积分电路的13脚控制端为低电平,使积分线路进行积分;将用于数据处理的寄存器清零;然后对A/D转换器进行数据采集;采集数据后进行温度补偿和电流值计算;再判断检测电流是否小于5H,如果小于,则认为电流此时为0,记录去零电流值用于初值补偿;如果不小于,则保存电流参数并继续检测。

    由于焊机变压器蓄能的影响,检测电流值总表现为一定数字,因此在本系统中判断实际电流为0是采用下限值的方式来进行。当电流采样值小于某下限值时,程序认为实际电流为0,因此下限值的选择显得十分重要,下限值可以根据应用的实际情况,通过键盘进行设定。当电流检测结束时,采集检测数据作为检测电路的去零电流值,系统再次检测时,把传感检测数据减去零电流值就可以进行初值消除,提高了测量精度,由于系统采用了去零初值处理,下限值设置产生的误差影响极小。

2.2 LCD显示软件设计

    LCD显示模块主要用来显示当前的测量结果或人机交互界面,采用金鹏电子有限公司生产的OCM128128-2图形点阵液晶显示模块,共8页(64行)128列,分左右两屏,每屏各64列,LCD显示模块的流程见图3,其中的几个典型函数定义如下:

    void check_busy(void);           //判断液晶忙否函数
    void send_cmd(Uint16 cmd);        //向控制器写指令
    void send_dat(Uint16 dat);         //向控制器写数据
    void lcd_initial(void);                       //初始化
    void main_page(void);                //各页面的界面
    void Set_Page_Address(Uint16 dat);        //写页地址
    void Set_Colume_Address(Uint16 dat);      //写列地址
    void Display_char(Uint16 page,Uint16 colume,const Uint16*zifu);     //显示字符
 void clear(void);                          //清屏程序

2.3 按键设置软件设计

    装置的按键设置程序软件采用中断和查询相结合的方法,如果有按键按下,便会产生中断信号,进入中断程序,然后查询是哪些按键按下,进入相应的功能程序。为使按键可靠工作,采用延时去“抖动”以防误操作。按键设置的流程图如图4所示,其中的延时、读键、选择和设置的子函数定义如下:

    void delaykey(uint t);   //专门为按键设置的延时函数
    void rdkey(void);                      //读键子函数
    void select(void); //选择子函数,用于参数显示、翻页设置
    void set(void); //按键设置子函数,控制参数类型以及下限设置

3 检测系统试验

    测试在SK3-Ⅱ微电脑电阻焊机上采用飞焊的形式进行,参照检测仪表为日本米亚基株式会社的MM-315A型焊接监测仪。表1为检测试验数据对照表。

    由试验结果分析可知,本电流系统试验测得的焊接电流与用MM-315A型焊接监测仪测得的焊接电流相比较,其电流值最大相对误差为0.67%。

    本文电流检测系统采用DSP进行数据采集、计算和显示,它解决了以往电流检测计算时间长的问题,它在检测过程通过温度传感器进行温度的软件补偿,并进行去零初值处理,使系统具有更高的检测准确度。焊接电流的检测试验中,将本系统与日本米亚基株式会社的MM-315A型焊接监测仪进行对比测试,结果表明,两种仪器的最大检测误差为0.67%。

关键字:电流检测  DSP  温度补偿 引用地址:基于DSP的焊接电流检测系统设计

上一篇:基于PLC的一氧化碳焚烧炉控制系统的设计
下一篇:基于TMS320F2812的最小系统设计

推荐阅读最新更新时间:2024-05-02 21:06

Beceem 4G多模基带芯片组选用CEVA-XC DSP内核
CEVA公司宣布,4G Mobile WiMAX芯片领先供应商Beceem Communications公司已获授权,在其下一代4G 多模平台BCS500中采用CEVA-XC通信处理器。BCS500是业界首款能够支持所有LTE 和 WiMAX组合,并可实现WiMAX 和 LTE之间切换(hand-off)的芯片。它支持的规范包括:LTE Rel. 8、WiMAX 16e以及16m、TDD和FDD、最高20MHz通道带宽以及150Mbps峰值速率的第4类用户设备(UE class 4)等等。 CEVA-XC面向下一代4G终端及基础设施市场,其架构专门针对高性能4G通信处理器开发而设计,可以突破传统硬连线架构无法逾越的局
[嵌入式]
基于DSP的数字语音压缩系统
语音的数字通信无论在可靠性、抗干扰能力、保密性还是价格方面都远优于模拟语音信号,但这是以信道占用宽频带宽为代价的。因此为了减少语音信号所占用的带宽或存储空间,就必须对数字语音信号进行压缩编码。 一个优秀的语音压缩系统要求能够在软硬件资源占用比例低和压缩编解码时间短的同时可以实现多通道语音实时压缩。目前,G.729A算法多是在TI的5000系列DSP上实现单通道或双通道语音压缩,而本设计在现有的TMS320C6711系列DSP平台上使用最少的硬件资源和软件开销,压缩编码解码时间,实现了多通道语音实时压缩解压。 选择语音压缩编码方案 在评价一个语音压缩编码方案时,一般从四个方面考虑:质量、速率、复杂度和延时。目前 ITU-U已制
[嵌入式]
RSA算法的TMS320C54x DSP实现
摘要:RSA算法是基于数论的公钥密码体制,是公钥密码体制中最优秀的加密算法。本文介绍RSA算法的基本原理以及用以TMS320C5402芯片为核心的硬件去实现RSA算法;提供了应的硬件、软件的接口设计,取得了较好的安全性和速度性能。 关键词:DSP RSA算法 公钥密码体制 模运算 引言 在当今的电信时代,由于采用大规模的电子计算机对数据进行处理,使得信息的传递大大加速,但是,也随之出现了令人最为担心的问题,就是信息的安全性。对信息进行保护的方法就是数据加密,通过对网络上传输的数据和系统内存储的数据进行加密,可以大大提高网络和信息的安全性。以较高的安全性而被广泛采用的RSA公钥密码体制,在现代安全性制中占有重要地位。RSA算
[应用]
DSP自动加载过程及程序烧写的简化设计
TMS320C6701(以下简称C6701)是一款浮点运算DSP,适用于需要大量运算且实时性要求高的场合,如导航解算等。在浮点DSP芯片中,C6701是一款可应用于恶劣环境并具有高可靠性的产品,因此该型DSP芯片虽然推出较早,却依然在某些领域具有重要应用价值。 DSP应用程序需脱离开发系统独立工作,在实时DSP应用系统中,通常将应用程序存储在外部非易失性存储器(如FLASH、EEPROM、PROM等)中。系统上电后,DSP将外部程序存储器的程序代码加载到可高速存取的RAM中,加载完成后自动跳转到零地址开始运行。因此DSP程序烧写及自动加载是实时DSP系统设计的重要部分。本文采用的烧写方法不需要格式转换到外部辅助设备,同时DSP程
[嵌入式]
DSP局部总线与VME总线的接口设计
1 引 言 VME(Versa Module Eurocard)总线是一种计算机总线结构,1981年由其生产商Motorola,Mostesk和Signe-tios三家公司组成的集团合作定义。1987年,VME总线被批准为国际标准IEEE1014-1987。VME总线系统采用主控/目标结构、异步非复用传输模式,支持16位、24位、32位寻址及8位、16位、24位、32位数据传输,最大总线速度是40 MB/s。1996年的新标准VME64(ANSI/VI-TA1-1994)将总线数据宽度提升到64位,最大数据传输速度为80 MB/s。而由FORCE COMPUTERS制定的VME64x总线规范将总线速度提高到了320 MB/s。历
[应用]
基于客户端DSP的数字电话系统
引 言 目前,模拟电话机产品占据电话终端的主导地位,但模拟电话只能传输语音信号;而数字电话具有高保密、可存储、信号质量好等优点。模拟电话机向数字电话机的过渡是电话终端发展的必然。本文研制出以美国TI公司的客户端数字信号处理器(DSP)为核心的数字电话系统,配置音频AD和DA以及电话线侧信号处理芯片,实现对语音信号的采集和输出、调制和解调、处理和存储等功能。语音信号的处理包括回音相消、自动增益调整(AGC)、自动功率调整(APC)以及数字滤波等功能。该系统具有数字化、小型化和价格低的特点,可以应用于各种保密场合、强噪声现场通信以及各种数据业务。 1 客户端处理芯片 系统的客户端处理采用TMS320C54CST和SI3016
[应用]
基于DSP和CAN总线的RTU的设计
远程测控终端(RTU) 作为体现“ 测控分散、管理集中” 思路的产品从20 世纪80 年代起介绍到中国并迅速得到广泛应用, 应用在变电站上的RTU 主要是实现现场电力参数的远程采集与控制命令的远程发布, 并将信息或结果组装成报文, 上送到控制中心或调度端。纵观国内外的RTU 产品, 逐步从集中式控制结构向模块化、分散式、开放性的系统控制结构发展。由于变电站的数据量和信息量大, 实时性要求高, 因此将具有强大、高效的运算能力和丰富外围接口电路的DSP 应用于RTU 的设计方案; 同时引入了开放性结构的CAN 现场总线引入, 运用于变电站现场数据的通信并由它组成了一个开放、可靠和实时的监控系统。   1 系统总体结构设计   RT
[模拟电子]
基于<font color='red'>DSP</font>和CAN总线的RTU的设计
基于DSP E1-16XS的硬件开发平台设计
引言 嵌入式系统硬件的核心是各种类型的嵌入式处理器,目前全世界嵌入式处理器的品种已经超过1000多种,流行体系结构有30多个系列,嵌入式处理器一般可以分为嵌入式微处理器、嵌入式微控制器、嵌入式DSP处理器和嵌入式片上系统。 与标准微处理器相比,嵌入式微处理器只保留了和嵌入式应用有关的功能,并且为了满足嵌入式应用的特殊要求,在工作温度、抗电磁干扰、可靠性等方面都做了各种增强。 DSP嵌入式系统是DSP系统嵌入到应用电子系统中的一种通用系统,这种系统既具有DSP器件在数据处理方面的优势,又具有应用目标所需要的技术特征,在许多嵌入式应用领域,既需要在数据处理方面具有独特的优势的DSP,也需要在智能控制方面技高一筹的微处理器(MCU)
[嵌入式]
小广播
热门活动
换一批
更多
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved