基于单片机控制的单端正激双向DC/DC变换器

发布者:SparklingBeauty最新更新时间:2013-03-21 来源: 21ic 关键字:单片机控制  变换器  单端正激 手机看文章 扫描二维码
随时随地手机看文章
1 引言
    在航空电源系统、电动汽车等车载电源、舰载电源、蓄电池储能等应用场合,两侧都是直流电压或直流有源负载,其中输入端接直流母线,输出端接储能装置(蓄电池)比较常见。此时为了实现充、放电,能量必须能够双向流动,因此就需要双向DC/DC变换器。随着科学技术的发展,双向DC/DC变换器的应用场合正在逐步扩大,特别适用于需要对蓄电池进行充/放电的场合。作为DC/DC变换器的一种新形式,双向DC/DC变换器在工业应用中的地位越来越突出。
    现今开关电源发展的趋势是低电压、大电流,这使得在次级整流电路中选用同步整流技术成为一种高效、低损耗的方法。双向DC/DC变换器的设计主要考虑主电路拓扑选择和控制方式选择。在此介绍了一种由单端正激变换电路作主电路、C8051F020单片机作控制器的双向DC/DC变换器的设计过程。该变换器应用同步整流技术,采用全数字控制,使得整个设计具有电路简洁、转换效率高、控制简单、工作可靠、可实现能量双向流动等特点。通过PSPICE仿真及样机的测试,验证了该方案的可行性。此变换器可用于各类电池的充、放电及直流电源的核心部分。

2 主电路拓扑
   
目前,应用较多的双向DC/DC变换器拓扑结构存在电路复杂、能量传输过程环节较多、变换器效率低、开关管电压难以抑制等缺点。单端正激变换器的电路较简单,是中、小功率电源中较常用的方式之一。图1为所提出的双向DC/DC变换器的主电路拓扑结构。

a.JPG


    系统由变压器T及其磁复位电路、主开关管V1、整流管V2和续流管V3、输出滤波电感L、电容C等部分组成。与同等功率等级的常见双向DC/DC变换器相比,该拓扑具有结构简洁、系统成本低、工作效率高、控制方法简单等特点,在工业应用中具有一定优势。
2.1 正向工作过程分析
   
图2为变换器正向工作电流连续时的主要波形。其工作过程分为4个阶段。

b.JPG


    阶段1[0,t1] V1和V2导通。t=0时,V1导通,电源电压Ui加在初级绕组N1上,即uN1=Ui,故铁心磁化,铁心磁通φ增长,即;N1dφ/dt =Ui。在此开关模态中,φ增长量为:
    △φ(+)=UiDyTs/N1     (1)
    变压器的励磁电流iM从零开始线性增加,且iM=Uit/Lm,Lm为初级绕组的励磁电感。则次级绕组N2上电压为:
    uN2=N2Ui/N1=Ui/K12    (2)
    式中:K12为初、次级绕组的匝比,K12=N1/N2。
    此时V2导通,V3截止,滤波电感电流iL线性增加,这与Buck变换器中开关管导通时一样,只是电压为Ui/K12,且:diL/dt=(Ui/K12-Ui)/L。[page]

    阶段2[t1,t2] V1处于关断状态。t1时刻,关断V1,初、次级绕组中无电流流过,此时变压器通过复位绕组进行磁复位,iM从复位绕组N3经过VD4回馈到输入电源。则复位绕组的电压uN3=-Ui。这样,初、次级绕组上的电压分别为:uN1=-K13Ui,uN2=-K23Ui。K13为初级绕组与N3的匝比,K13=N1/N3;K23为次级绕组与N3的匝比,K23=N2/N3。此时,V2,V3关断,iL通过VD3续流。
    阶段3[t2,t3] V1仍处于关断状态,V3导通,使得导通损耗大为降低,iL继续经过V3续流,此阶段将持续到V3被触发关断时结束。
    阶段4[t3,t4] V3关断,但其体二极管仍导通,该体二极管续流,所有绕组中均没有电流,其电压均为零。此阶段直至V1被触发导通时结束。至此,主电路的一个工作周期结束。
2.2 反向工作过程分析
   
电路反向工作时的工作过程与Boost电路基本一致,可分为两个阶段,其主要工作波形如图3所示,此时V1不动作。

e.JPG


    阶段1[0,t1] V3导通,V2关断,蓄电池放电,电流流过L,iL线性增加,直到t1时刻,iL达到最大值,电能以磁能形式储存在L中。在V3导通期间,iL的增量为:
    f.JPG
    阶段2[t1,t2] V3关断,V2导通。L将其中磁能转化为电能,与蓄电池一起向输入侧放电,iL线性衰减,直到t2时刻,iL到达最小值。在V3截止期间,iL的减小量为:
    g.JPG

3 控制系统设计
3.1 控制系统结构与主要硬件设计
   
双向DC/DC变换器包括一个由功率元件组成的功率主回路、控制回路和驱动电路等,见图4。

h.JPG


    在此考虑到外接输入信号可能对驱动电路造成短路的问题,采用集成电路驱动形式,选用IR2110芯片。由于输出电流不能直接被单片机获得,需要通过设计电流检测电路来准确及时地测量电流值。在此采用UGN-3501M霍尔传感器,它具有灵敏度高、工作温度范围宽(-20~85℃ )等特点,检测电路以集成AD522芯片为放大级,AD522为双端输入、单端输出的测量放大器,具有高输入阻抗、线性度良好、准确度较高等特点。

[page]

3.2 系统软件设计
   
系统工作分为两个过程:降压变换和升压变换。在降压变换中,对采样电压信号进行A/D转换,通过增量式数字PI算法调节占空比的大小,产生PWM波形,控制输出端电压。在升压变换中,对采样电流信号进行A/D转换,通过增量式数字PI算法调节占空比的大小,产生PWM波形,控制输出端电流。主程序流程如图5所示。

i.JPG



4 系统仿真分析
   
这里采用PSPICE对系统主电路进行仿真。仿真参数为:输入电压400 V,输出电压2 V,电感14.2 μH,电容9 900 μF,开关频率55 kHz,变压器变比170:3,最大占空比0.4,负载电阻1 kΩ,图6示出仿真波形。

j.JPG


    图6a中自上至下分别为能量正向流动时V1~V3驱动电压及反向流动时V2,V3驱动电压波形。可见,能量正向流动时,ugV1与ugV2同步产生,ugV2与ugV3形成互补,并加有死区时间;反向流动时,V2和V3交替导通以保证能量正常传输,两者也有重叠导通的时间来保证电流完成必要的换流。
    图6b为能量正向流动时DC/DC变换器的输出电压Uo及能量反向流动时输出电流Io波形。可见,系统电压动态响应较好,实现了从400~2 V的能量转换。当变换器反向工作时,蓄电池的输出电流保持恒定,纹波较小,电感设计较为准确。

5 实验分析
   
实验样机主要元件选型和参数如下:V1根据输入电压为400 V等工作条件,采用型号为IXFN100N50P的功率MOSFET;V2,V3采用专门用于同步整流的MOSFET管IRL3803;储能电感L=14.2 μH;输出滤波电容为9 900 μF;负载为蓄电池。实验结果如图7所示。图7a为给蓄电池充电时V2和V3的PWM驱动波形。由于此时V1与V2同步,因此可较明显看出两路驱动信号形成互补,并有死区,与理论分析完全吻合。图7b为能量反向流动时V2和V3的PWM驱动波形,此时V1不工作。由实验波形可见,开关频率近似为55 kHz,PWM的占空比近似为0.4,实现了能量的双向流动。

k.JPG



6 结论
   
详细介绍了一种基于单片机控制的双向升降压DC/DC变换器设计方案。通过仿真和实验分析,验证了该变换器方案的可行性,工作安全可靠且具有良好的电源特性。整个系统成本低,且采用全数字控制,硬件设计简单,可靠性较高,故对于需要能量双向流动控制的场合应用较方便。

关键字:单片机控制  变换器  单端正激 引用地址:基于单片机控制的单端正激双向DC/DC变换器

上一篇:51单片机定时器/计数器
下一篇:MCS-51单片机内部结构

推荐阅读最新更新时间:2024-03-16 13:20

基于DSP正弦波调制的三电平变换器
1 概述 二极管中点钳位型的三电平逆变器的主电路拓扑结构如图1所示。由于二极管的钳位,这种变换器每个功率开关管承受的最大电压为直流侧电压的1/2,从而实现了用中低压器件完成中高容量的变换。另外,由于相电压有三种电平状态,比传统的二电平逆变器多了一个电平,其谐波水平明显低于二电平变换器,输出相同质量电流波形的时候,开关频率可以降低到两电平的1/4。最后,由于采用了不对称的双向开关,能量可以双向流动,可以很好地控制功率因数和实现电机四象限运行。然而,由于这种拓扑结构使用了12个功率管,其控制方法也随之复杂。另外,直流侧中点电位的不平衡也是制约该拓扑的一个重要因素。 图1 三电平变换器主电路结构 三电平变换器的控制
[电源管理]
超具创意单片机控制LED彩虹瀑布时钟
  如何让苍白单调的时间变成彩色的?这个虹彩瀑布时钟项目就是答案!      一段时间的全力投入之后,我终于完成了这个彩虹瀑布时钟:-)   这个时钟受到了 这个DIY项目 的启发:   在看到Doug的制作的时候,我想到了RGB LED,于是就计划做点不一样的创意出来。这就是思考后的成果(在被我女朋友一脚踢飞之前),我也很乐意和大家一起分享制作的过程。   这个制作基于一块Arduino上的ATmega328芯片,稍微修改了一下PCB把输出由负极性变为正极性,还添加了一块ULN2003用作缓冲输出。   1 设计         我在本地的一家小公司丝网印刷时钟的面板,一块是标准的300mm x 300mm尺寸,
[单片机]
超具创意<font color='red'>单片机控制</font>LED彩虹瀑布时钟
51单片机控制LCD1602模块
(1)LCD1602概述 先来看看LCD1602什么意思?Liquid Crystal Display(LCD)表示液晶显示,1602 表示一行可以显示16个字符,一共有两行。 现在我们来看看如何使用简单的IO控制和延时来实现操作LCD1602液晶模块。既然是用单片机控制LCD1602,那么根据前面的分析,首先要搞清楚谁是控制对象,谁是被控制对象。很显然,LCD1602是被控制对象,那么我们就先从LCD1602开始分析。所谓控制也可以理解为沟通,比如你与室友沟通,希望他帮你买瓶绿茶,那么就表示至少你的室友能听懂你的“指令”,能知道绿茶是什么,如何去买等等信息。好了,那么如何与LCD1602沟通呢?可以想一想,平时人与人是如何沟通
[单片机]
51<font color='red'>单片机控制</font>LCD1602模块
UOUT=1V的DC/DC变换器发展趋势
1简介 为了以更低的功耗获得更高的速度和更佳的性能,半导体器件正在向1V工作电压发展,这也对DC/DC变换器提出了更高的要求。由于便携产品将率先采用1V工作电压,因而对电源效率和功率密度的挑战显得更为严峻。除了需要增添更多的功能外,还需要延长电池的使用寿命,并缩小系统体积。随着便携系统内部功能的增多,如更高的内存,更快的处理速度,因特网访问带宽更高,对电源的要求也相应提高。电源效率的改善则意味着新一代便携系统需要承受指数级增长的电流,系统体积小,散热能力差,更容易产生过热。因此系统散热成为令人关注的问题。在U OUT =1V的电压下维持较高的电效率是非常困难的。如果输入和输出电压之间的差值增加,更难获得高性能。为此,必须找到适
[电源管理]
UOUT=1V的DC/DC<font color='red'>变换器</font>发展趋势
PIC单片机控制DS18B20 源程序
P IC 单片机 控制DS18B20 源程序 ORG   PIC54    GOTO  MAIN    ORG   0 ;---------------------- ;---------------------------- DELAY22            MOV LW  D 200         ; DELAY 2*250=500mS      MOV WF  COUNT1 DE32   MOV LW  D 250         ; 8*250=2mS    MOV WF  COUNT2 DE42  NOP             ; 1+2+1=5uS     DECFSZ  COUNT2,1     GOTO 
[单片机]
六种基本DC/DC变换器拓扑结构总结
六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器     半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。 正激变换器 绕组复位正激变换器   LCD
[电源管理]
六种基本DC/DC<font color='red'>变换器</font>拓扑结构总结
单片机控制DAC0832输出锯齿波
DAC 0832:DAC0832是8位全MOS中速 D/A 转换器,采用R—2RT 形 电阻 解码 网络,转换结果为一对差动 电流 输出,转换时间大约为1us。使用单 电源 +5V―+15V 供电。参考 电压 为-10V-+10V。在此我们直接选择+5V 作为参考电压。DAC0832 有三种工作方式:直通方式,单缓冲方式,双缓冲方式;在此我们选择直通的工作方式,将XFER WR2 CS 管脚全部接数字地。管脚8 接参考电压,在此我们接的参考电压是+5V。我们在控制P0口输出数据有规律的变化将可以产生三角波,锯齿波,梯型波等波形了。 #include reg51.h sbit wela=P2^7; // 数码管 位选 sbi
[单片机]
热敏电阻结合高分辨∑△A/D变换器测量温度
温度是工业、消费类和计算机应用中最普遍测量的变量之一,而热敏电阻是监控这种物理条件主要手段之一。但必须在数字或模拟范围线性化热敏电阻输出以获得精确测量。也必须为热敏电阻本身自热效应选择激励源和补偿。过热所引起的误差导致器件电阻变化,使误差进入测量系统。 在测量温度的大多数应用中,必须把测量值从模拟变为数字形式。采用高精度∑△变换器可大大减少变换所需的大量信号调理元件,这是一种高精度、低成本系统实现方案。 测温用热敏电阻 热敏电阻是用半导体材料制作的电路元件,它们有高负温度系数(NTC)或高正温度系数(PTC)特性。一个NTC热敏电阻相当于一个电阻器,温度系数范围为-3%~-5%/℃。热敏电阻器,绝对值输出在其工作温
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
  • ARM裸机篇--按键中断
    先看看GPOI的输入实验:按键电路图:GPF1管教的功能:EINT1要使用GPF1作为EINT1的功能时,只要将GPFCON的3:2位配置成10就可以了!GPF1先配 ...
  • 网上下的--ARM入门笔记
    简单的介绍打今天起菜鸟的ARM笔记算是开张了,也算给我的这些笔记找个存的地方。为什么要发布出来?也许是大家感兴趣的,其实这些笔记之所 ...
  • 学习ARM开发(23)
    三个任务准备与运行结果下来看看创建任务和任运的栈空间怎么样的,以及运行输出。Made in china by UCSDN(caijunsheng)Lichee 1 0 0 ...
  • 学习ARM开发(22)
    关闭中断与打开中断中断是一种高效的对话机制,但有时并不想程序运行的过程中中断运行,比如正在打印东西,但程序突然中断了,又让另外一个 ...
  • 学习ARM开发(21)
    先要声明任务指针,因为后面需要使用。 任务指针 volatile TASK_TCB* volatile g_pCurrentTask = NULL;volatile TASK_TCB* vol ...
  • 学习ARM开发(20)
  • 学习ARM开发(19)
  • 学习ARM开发(14)
  • 学习ARM开发(15)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved