PIC单片机的每四个时钟周期为一个内部指令周期
例如:8MHz的晶振,则内部指令周期为1/(8/4)= 0.5 uS
实例一:35us, 8MHz的晶振, 8位定时器, 分频比1/2 , 初值 E4
实例二:156.25us , 32768Hz的晶振, 8位定时器, 分频比1/32 , 初值 FC
计算方法一: 35 = =(256-初值)*分频*4/晶振 + 14/分频 =(256-初值)+14/2
计算方法二:0.015625 =(256-初值)*分频*4/晶振 = (256-初值)*32*4/32768
特别注意:分频比1-8 需要加上一个14/分频
什么是预分频比 后分频比
分频器一般都是跟计数单元一起结合使用。
预分频比是在计数单元值发生变化之前起作用(假如不用预分频时,计数器在每个上升沿到来时加1,而现在使用分频比为1:2的预分频器的话,那么必须等到两个上升沿的到来,计数器才会加1)
后分频器与预分频器功能一样,只不过是在计数器值发生改变后起作用。像TMR2的后分频器,如果不使用,计数器一但发生溢出,将立即置位标志为TMR2IF,但是如果有1:2的后分频器的话,必须两次溢出后才会置位。
关键字:PIC单片机 指令周期 时钟周期
引用地址:
PIC单片机指令周期计算
推荐阅读最新更新时间:2024-03-16 13:24
基于PIC单片机及图像处理技术设计的智能台球机器人
设计摘要 台球源于英国,它是一项在国际上广泛流行的高雅室内体育运动。随着各种运动的兴起发展,台球以其内涵高雅、放松身心的特点越来越受大家欢迎。依靠单片机技术的日益成熟,基于单片机的小型化高精度控制过程的广泛应用,色度学、先进光电成像技术、计算机技术和图像处理技术的飞速发展和电机驱动技术、传感器技术以及控制技术的不断发展,我们计划设计可以与人对打的台球智能机器人,使人们可以在即使一个人的情况之下也可以享受台球带来的娱乐、休闲。 我们这次设计的智能台球机器是以PIC单片机为核心的控制系统,结合了图像处理技术,PIC单片机控制电机系统,以及机械机构设计技术等方面的知识,利用了各种芯片来实现对台球系统的图像采集处理技术,同时,使用各种
[电源管理]
PC机与PIC单片机主从式多机通讯及其在数据检测系统
简介:主要针对煤气报警器检测系统的数据传输问题,提出一种PC机与多台PIC单片机主从式串行异步通讯的方式,给出硬件电路图、通信协议、软件流程图及其在实际的数据检测系统中应用时的注意事项。 在煤气报警器的出厂检验中,需要对其关键部件气体传感器的工作情况进行监测。系统框图如图1所示。 在这个气体传感器监测系统中,使用了多台PIC单片机作为下位机采集气体传感器的工作状态数据及环境参数(环境温度,环境湿度等参数),并按照上位机的要求将采得的数据传送给PC机。上位机与各下位机之间采用主从式的异步串行通讯方式,即下位机接到上位机的通讯信号时才做出响应,否则将一直做采集数据的工作。所采用的下位机型号为PIC16C711,它体积小,功能强
[单片机]
PIC单片机程序设计的基本结构框架
为了快速掌握PIC单片机源程序的基本结构,这里给出一个典型的程序结构框架。建立源程序时首先用伪指令TITLE提供程序的标题,接着给出整个程序的总说明,并用列表伪指令LIST指定所用单片机型号和文件输出格式,再利用INCLUDE伪指令读入MPASM中提供的定义文件如《P16F84?INC》,然后对片内常用资源进行定义,再给出一般程序的基本结构框架。现举例如下。 TITLE“This is……”;程序标题 ;程序说明 LIST P=16F84,F=1NHX8M ; include p16F84.inc -config_RC_Qsc &_WDT_0FF… ;资源定义和变量定义 STATUS EQU 03
[单片机]
基于PIC单片机的厨房电器设备的智能控制设计方案解析
随着智能家电控制技术的不断发展,具有多功能和智能化的厨房控制器成为厨房电器设备发展的主流。和传统单一厨房设备控制器相比,多功能厨房控制器具有占用空间小、成本低、功能多、便于设备统一管理,使用安全、方便等优点。 系统以PIC单片机作为主控制芯片,选用VFD(Vacuum Fluorescent Display)真空荧光屏为显示器,结合气敏传感器,热敏电阻,高压点火器,继电器等受控对象,通过检测外部信号以及内部定时时间状态可以控制各种受控对象工作状态之间的相互转换,实现对厨房电器设备的智能控制。系统结构框图如图1所示。 1 各单元电路硬件设计 1.1 电源电路设计 设计所需的6组工作电源均由如图2所示的电路提供。6组电源分别为
[单片机]
基于GPRS的自来水流量监测终端的设计
系统总体构成 自来水流量远程监测系统的结构如图1 所示。系统由若干监测终端、无线数据传输网络和监控中心三部分组成。其中,监测终端安装于各供水分区的监测点,及时将监测到的流量数据通过GPRS网络传输到设在自来水公司的监控中心,由中心对各分区的数据进行分析,从而实现对各分区供水的科学管理。这里所说的供水分区不是一般的给水系统分区(并联分区或串联分区),而是在供水管网上安装流量计将整个供水系统划分成若干个供水区域,每个区域作为一个监测点,对管理区域内流进的自来水总量和实际销售的水量进行量化管理,以此来了解和掌握各区域内的需水量、供销差、漏失量、未收费水量等情况。 图1 系统结构图 其中,监测终端应实现下列功能:
[工业控制]
PIC单片机源程序的模拟仿真设计
我们在编辑PIC单片机的C语言时,常常应用对源程序的模拟仿真技术,因为对程序的模拟仿真可代替部分单片机的硬件制作与调试,即使在深入学习PIC单片机C语言程序时,模拟仿真技术,也是不可缺少的。这里以程序实例演示其操作方法。 对源程序的模拟仿真可以完成下列功能:直接观察C程序从主程序main()开始运行的全过程;为了清楚观察程序中各变量和寄存器的变化情况,可采用单步运行(stePINto)命令和单步越过(stepover)命令进行模拟运行调试,使观察变量更方便;设置断点再选择Run(快速)命令,程序运行到断点处会停下来,以便观察变量功能;此外,还能定量观察程序中的变化值,如直接观察程序的延时量等多种功能。当然在进行程序模拟仿真时,
[单片机]
PIC单片机CONFIG说明
CONFIG又称为熔丝位,可以通过配置熔丝位来配置单片机内部的功能,比如晶振时钟、看门狗、JTAG、掉电检测与代码保护等,如果对这些设置不了解的话,建议直接复制粘贴。 在PIC单片机中,我们既可以通过在代码中添加CONFIG代码来设置熔丝位,也可以通过在MPLAB IDE集成开发环境中通过界面进行配置。 界面配置方法: 点击Configure Select Device选择相应的器件,这里我们选择PIC24FJ64GB004,如图1、图2所示: 图1 图2 选择好器件后,点击Configure Configuration Bits,进入图3界面,取消掉Configration Bits set in cod
[单片机]
PIC单片机在汽车电动车窗控制器中的应用
随着汽车电子技术的发展,越来越多的电子产品装载到汽车上,极大地提高了汽车的动力性和舒适性,同时也增加了车内布线的难度和成本。CAN(Controller Area Network)作为一种串行数据通信总线,由于具有良好的可靠性、实时性及灵活性,已经成为国际标准(ISO11898) ,在汽车电子系统中得到了广泛的应用。 目前,在CAN系统设计中,使用最多的是单片机外挂独立的CAN控制器,如Philips公司的PCA82C200、SJA1000以及Intel公司的82526、82527等芯片。但是采用此类芯片的设计方案不利于系统集成化。本文以Microchip公司内部集成的CAN模块PIC18F258单片机为核心,介绍CAN
[单片机]