基于短距离无线数据低功耗传输协议研究

发布者:HarmonyInLife最新更新时间:2013-11-30 来源: dzsc关键字:无线数据  低功耗传输协议  MC13213 手机看文章 扫描二维码
随时随地手机看文章

  短距离无线数据传输是一种线缆替代技术,在当前很多领域(如工业生产、医疗监护、科学研究等)都得到了广泛的应用。它的出现,解决了因环境和条件限制而不利于有线布线的问题,同时具有低成本、方便携带等优点。然而由于存在高功耗的缺点,使得这技术在很多供电受限的工业现场应用中受到了很大的限制。本文基于Freescale公司的MC13213硬件平台对短距离无线数据的低功耗传输协议进行了研究,在保证数据可靠传输的同时,极大地降低了设备的功耗。

  1  主要芯片介绍

  MC13213是Freescale公司推出的一款SoC芯片,它主要由微处理器和射频模块两部分组成。微处理器采用8位的HCS08内核,集成了1个SPI(Serial Peripheral Interface)接口、1个8路的8/10位A/D转换器、2个TPM(Timer/PWM)模块、2个SCI(Serial Communication Interface)接口、2个I2C和1个8路的KBI(Keyboard Interrupt)接口。射频模块的工作频段是2.4 GHz,通过SPI总线与处理器通信。其主要特点有:

  ◆ 采用2.4 GHz频段,其设计构架符合IEEE 802.15.4协议;

  ◆ 接收灵敏度<-92 dBm,发送功率为-28.7~+3.4 dBm可调;

  ◆ 拥有0~15(共16)个可选工作信道;

  ◆ 采用直接序列扩频(direct sequence spread spectrum)的二进制编码方式,增强了抗干扰能力;

  ◆ 采用OQPSK数字相移键控调制技术,大大降低了数据传输的误码率;

  ◆ 采用免冲突的载波检测多址接入(CSMACA)机制,避免了数据传输过程中的冲突。

  2  硬件系统设计

  如图1所示,整个系统硬件结构由4部分组成:RS232/485总线接口单元、数据处理单元、射频收发单元和电源管理单元。


  图1  短距离无线数据传输模块硬件结构图

  一方面,PC/仪器仪表通过RS232/485总线将数据传送给MCU处理器,处理器将数据包进行适当处理后送给射频模块发送出去;另一方面,射频模块将接收到的数据送给MCU处理器,处理器经过解包处理后再通过RS232/485总线将数据送给PC/仪器仪表。

  工业中的仪器仪表大多都采用RS485总线通信方式,因此无线数据传输设备提供RS232/485可选通信接口,既方便连接PC机,又满足了一般仪器仪表的要求,串口波特率为1 200~115 200 bps可调。

  3  软件设计和低功耗通信协议研究

  无线数据传输设备的一般工作流程如图2所示。在进行相关初始化之后就进入主循环,对射频模块和串口进行轮询: 当射频模块接收到数据包时就进行解包,然后送到RS232/485总线;当串口接收到从RS232/485总线上发来的数据时,就进行相关处理并送入射频模块发送出去。这种轮询的方式结构简单,实现方便。


  图2  短距离无线传输设备软件流程

  然而,在这种工作方式下,射频模块就必须时刻*信道。在2.7  V工作电压、处理器时钟频率为2 MHz时,MC13213的射频模块接收工作电流IRF(Rx)≈37 mA,处理器以及外围器件的工作电流Imcu≈2 mA,因此设备的正常工作电流I≈39 mA,这个电流对于一些供电受限的工业应用显然是不能够接受的。为了降低无线传输设备的功耗,需要对设备之间的传输协议作适当的改进。

  由于在大部分的时间里设备之间没有进行数据传输,因此射频模块一直处于接收状态是一种资源浪费。而设备本身不知道对方何时有数据传输过来,因此设备之间约定在特定的时间段内进行数据传输,而其余时间休眠。

  这样一种约定需要一种同步机制。我们采用信标同步机制:一个设备定时发送一个称为“信标(Beacon)”的数据包,即信标帧。另一个设备通过接收该信标帧来实现同步。我们将发送信标帧的设备称为“主设备”,接收信标帧的设备称为“从设备”。通过信标帧,即可实现从设备和主设备之间的同步。

  在该协议中,有3种类型的数据包:信标帧、数据请求帧和数据帧。信标帧和数据帧的帧头包含有是否有数据待传的信息。

  实现同步之后,主设备和从设备之间就约定进入休眠时间(Tsleep)。在休眠期间射频模块深度睡眠(虽然关闭射频模块后功耗会更低,但唤醒时间太长),处理器处于超低功耗状态,只有串口处于接收状态。休眠时间结束后,主设备就会醒来,并且射频模块向外发送信标帧。信标发送完后,射频模块立即进入接收状态。从设备从休眠中醒来后立即唤醒射频模块进行信标侦听,当接收到主设备发送过来的信标后,就会判断主设备是否有数据待传。如果有,就向主设备发送数据请求帧;否则,从设备就会将自己串口接收到的数据通过射频模块发送给主设备,直到数据发送结束进入下一个周期的休眠时间(Tsleep)。主设备接收并处理从设备发送的数据帧,并通过数据帧的帧头判断是继续等待还是进入下一周期的休眠时间。当主、从设备都没有数据需要进行传输时,从设备接收到信标后直接进入下一周期的休眠时间,而主设备等待Twait后没有收到从设备的任何数据,也会进入下一个周期的休眠时间。在这种情况下,由于从设备会比主设备早休眠Twait的时间,因此从设备的休眠时间为Twait+Tsleep。另外为了防止失去同步,从设备醒来后就将射频模块设置为接收状态,直到接收到信标帧,或者超时继续进入休眠。这个超时阈值至少为Tsleep,从而保证了重新同步。如果从设备N次都没有收到信标帧,可以认为周围没有主设备,因此可以进行一次长时间的休眠Thibernate。具体流程如图3所示。[page]


  图3  低功耗改进后的主、从设备软件流程

  经过该协议优化后,主、从设备在一个周期内的工作状态如图4所示。

  改进前的平均工作电流:


  图4  改进前后主从设备无数据传输时一个周期内的工作状态

  改进后的平均工作电流:


  表1  2.7 V工作电压下测得的主、从设备工作电流


  其中:

  射频模块接收状态时的工作电流IRF(Rx)≈37 mA;

  射频模块发送状态时的工作电流IRF(Tx)≈30 mA;

  射频模块深度睡眠的工作电流IRF(sleep)≈35 μA;

  处理器正常工作电流Imcu≈2 mA;

  处理器休眠工作电流Imcu(sleep)≈5 μA;

  射频模块发送1个数据包需要的最大时间Td≈4 ms。

  因此,当Twait=5 ms,Tsleep=200 ms时,I后(主)≈1.58 mA,I后(从)≈0.79 mA。远小于改进前的I前≈39 mA。

  4  实验结果和总结

  采用了低功耗的传输协议后,在Tsleep分别为200 ms、500 ms和1 s情况下,无数据传输和每10 s互传一个数据包时测量得到的电流如表1所列。可见,采用了低功耗的传输协议后在保证了数据可靠、稳定传输的同时,大大降低了设备的功耗。休眠时间Tsleep 增大,功耗就会下降,同时数据传输的延时性就会增加。而且当只有从设备在工作时,Tsleep太长反而会增大从设备的功耗。一般地,只有满足:


  才能保证主设备不工作时,从设备功耗不会增加。上式中N表示多次未收到信标就进行一次Thibernate的长时间休眠。在实际应用中可以根据需要找到最优点。(作者:  东南大学 王琢玉 方晨 刘昊 )


参考文献:

[1]. MC13213 datasheet http://www.dzsc.com/datasheet/MC13213_2413763.html.
[2]. HCS08 datasheet http://www.dzsc.com/datasheet/HCS08_370762.html.
[3]. RS485 datasheet http://www.dzsc.com/datasheet/RS485_585289.html.

关键字:无线数据  低功耗传输协议  MC13213 引用地址:基于短距离无线数据低功耗传输协议研究

上一篇:单片机应用编程技巧问答
下一篇:基于EM250的ZigBee无线传感器网络解决方案

推荐阅读最新更新时间:2024-03-16 13:30

NI针对声音和振动的新型无线数据采集设备
美国国家仪器有限公司( National Instruments ,简称 NI )近日发布了针对声音和振动应用的新型无线数据采集模块和 2 款新型 PXI Express 模块。通过 NI WLS-9234 无线动态信号采集( DSA )模块,工程师和科学家可以通过 IEEE 802.11g ( Wi-Fi )通信协议,将振动数据以无线的方式传输到分布式的监控系统;不但降低成本,而且避免了复杂的布线。新型 PXI Express DSA 模块 ——NI PXIe-4496 和 PXIe-4498, 将在一个 PXI Express 机箱内通过 272 个通道同时采集数据的工作变成可能,这样,工程师可以以更快的速度,通过更多通道,
[工业控制]
NI针对声音和振动的新型<font color='red'>无线数据</font>采集设备
具有波特率自适应功能的无线数据传输模块设计
1 模块总体结构 基于nRF401无线数据传输器件的数传模块总体硬件结构如图1所示,主要由微控制器和蓝牙芯片及其相应的外围电路组成,能自动完成波特率识别,并进行数据的编码处理,给用户提供了一个透明的数据接口。微控制器选用Atmel公司推出的可在线编程的单片机AT89S51,便于以后软件的升级。通过对发送数据是否需要曼彻斯特编码、所需外围元件的数量、功耗及发射功率等方面的因素综合比较,选用nRF40l作为无线数传器件。 nRF401是单片无线收发器件,采用蓝牙核心技术设计,内部集成高频发射、高频接收、PLL合成、FSK调制、FSK解调、多频道切换等诸多功能和外围部件协议,是目前集成度最高的无线数传产品,也是唯一可以直接连接微控制
[应用]
基于nRF905和LPC2148 ARM开发板的无线数据收发
所设计的无线数据收发系统是无线随动控制系统的重要组成部分,主要由 nRF905 无线收发模块和 LPC2148 ARM开发板组成,用来实现手动系统与随动系统之间的无线数据传输,有效地解决了在恶劣环境下布线困难的问题。    1 nRF905无线收发模块   nRF905是一个工作在433/868/915 MHz的ISM频段,完全集成的单片无线收发器芯片。nRF905芯片内部包含有一个完全集成的调制器、带解码器的接收器、功率放大器、晶体振荡器等电路。其采用DSS+PLL频率合成技术和GMSK调制,频率稳定性非常好,抗干扰能力强;可以很容易通过SPI接口编程配置其工作模式;最多信道数可达170个,能够满足需要多信道工作的特殊场
[模拟电子]
基于nRF905和LPC2148 ARM开发板的<font color='red'>无线数据</font>收发
基于短距离无线数据低功耗传输协议研究
  短距离无线数据传输是一种线缆替代技术,在当前很多领域(如工业生产、医疗监护、科学研究等)都得到了广泛的应用。它的出现,解决了因环境和条件限制而不利于有线布线的问题,同时具有低成本、方便携带等优点。然而由于存在高功耗的缺点,使得这技术在很多供电受限的工业现场应用中受到了很大的限制。本文基于Freescale公司的MC13213硬件平台对短距离无线数据的低功耗传输协议进行了研究,在保证数据可靠传输的同时,极大地降低了设备的功耗。   1 主要芯片介绍   MC13213是Freescale公司推出的一款SoC芯片,它主要由微处理器和射频模块两部分组成。微处理器采用8位的HCS08内核,集成了1个SPI(Serial Perip
[单片机]
基于短距离<font color='red'>无线数据</font><font color='red'>低功耗</font><font color='red'>传输</font><font color='red'>协议</font>研究
内嵌微控制器的无线数据发射器的特性及应用
    摘要: 简要介绍内嵌AVR RISC微控制器的无线数据发射器AT86RF401的功能、内部结构、引脚排列及典型的应用电路。     关键词: 线数据传输 无线发射器 微控制器 概 述 AT86RF401是单片机集成内嵌AVR RISC微控制器的RF无线数据发射器,输出频率范围为250~450MHz,最大输出功率+6dBm,发射率10Kband。芯片内嵌AVR RISC微控制器、2KB(1K×16b)的Flash程序存储器、128B(字节)的可下载的EEPROM数据存储器、128B的RISC SRAM、看门狗定时器、6个通用I/O、在系统可编程。工作电压2.0~
[应用]
基于USB接口的无线数据传输系统的设计
引言 通信是信息的交换平台,在人们的工作和日常生活中起着重要的作用。传统的通信技术是通过数据线和串口/并口将设备连接在一起,这样就存在布线困难和其它不方便的因素。而且传统的RS232串口通迅和并口通讯都存在传输速度低、接口的连接过于复杂等不足。本文所设计的基于USB接口的无线数据传输系统利用了USB接口的高传输速率、即插即用等优点,并结合了无线数据传输技术,实现了计算机之间的无线数据通讯,解决了传统通信技术带给我们的不便。 系统硬件设计 基于USB接口的无线数据传输系统总体方案如图1所示,该系统由发射和接收两部分组成。其中,发射(接收)系统由单片机控制射频发射模块和单片机控制USB芯片两部分组成。系统的工作过程为:主机将数
[单片机]
基于USB接口的<font color='red'>无线数据</font><font color='red'>传输</font>系统的设计
AT89C51单片机在无线数据传输中的应用
摘要: 介绍无线数据传输系统的组成、AT89C51单片机串行口的工作方式及其与无线数字电台接口的软硬件设计与实现方法。 一般的数字采集系统,是通过传感器将捕捉的现场信号转换为电信号,经模/数转换器ADC采样、量化、编码后,为成数字信号,存入数据存储器,或送给微处理器,或通过无线方式将数据发送给接收端进行处理。无线数据传输系统就是 样一套利用无线手段,将采集的数据由测量站发送到主控站的设备。 1 系统组成 系统组成如图1、图2所示。 系统由测量站和主控站两部分组成。测量站主要完成对现场信号的采集、存储,接收遥控指令并发送数据。主控站的主要工作是发送遥控指令、接收数据信息、进行数据处理和数据管理、随机显示打印等。 2 A
[单片机]
AT89C51单片机在<font color='red'>无线数据</font><font color='red'>传输</font>中的应用
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved